HYPOTHESIS TEST

for two population means μ_1 and μ_2 (Always t-test)

They give us some observe data (samples)

two complete lists of data	we enter data in LIST 1 and LIST 2 of GDC
or	sample means: $\bar{x}_{_1}$ $\bar{x}_{_2}$
only the statistics	standard deviations: S_{χ_1} S_{χ_2}
	size of the samples: n_1 n_2

We test a CLAIM for the two population means μ_1 and μ_2

CLAIM μ ₁ =μ ₂ against	μ ₁ ≠μ ₂	μ1>μ2	or μ1<μ2	
CLAIM $\mu_1=\mu_2$ against	2-tailed test	t 1-	1-tailed test	
The significance level is usually	10%	5%	1%	
The significance level is usually	a=0.10	a=0.05	a=0.01	
(they are clearly stated in the question)				

We state

[null hypothesis]	Η ₀ : μ ₁ =μ ₂
[alternative hypothesis]	H ₁ : μ ₁ ≠μ ₂ or μ ₁ ≠μ ₂ or μ ₁ <μ ₂

We use GDC to find p-value

Statistics - TEST - t - (2 samples)		
if List :	statistics s_{x} , \bar{x} , n are already there	
if Var:	we enter S_x , \overline{x} , n on ourselves	
Execute gives		
p-value		

Conclusion

IF	THEN
p-value < a	we reject Ho
otherwise	we do not reject Ho