Area of a Circle: $A=\pi r^{2}$
Circumference of a Circle: $C=2 \pi r$
Area of a Rectangle: $A=I w$
Area of a Triangle: $A=\frac{1}{2} b h$
Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$
Special Right Triangles:

Volume of a Rectangular Prism (Box): $V=I w h$
Volume of a Cylindar: $V=\pi r^{2} h$
Volume of a Sphere: $V=\frac{4}{3} \pi r^{3}$
Volume of a Cone: $V=\frac{1}{3} \pi r^{2} h$
Volume of a Pyramid: $V=\frac{1}{3} / w h$

Fractions, Decimals, and Percentages: (for this section, r is the percent in decimal form)
Fraction $=\frac{\text { part }}{\text { whole }} \quad$ Increase by a percent: multiply by $(1+r)$
Decrease by a percent: multiply by ($1-r$)
percent $=\frac{\text { part }}{100}$
Percent Increase or Decrease:
$\frac{\mid \text { old - new } \mid}{\text { old }} \times 100 \%$
Simple Interest: $A=P(1+r t)$
Interest Compounded Annually: $A=P(1+r)^{t}$
Interest Compounded n times per year:

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Exponents, Roots, \& Polynomials:

Multiplication Rule for Exponents: $a^{b} \cdot a^{c}=a^{b+c}$
Negative Exponents: $a^{-b}=\frac{1}{a^{b}}$
Division Rule for Exponents: $\frac{a^{b}}{a^{c}}=a^{b-c}$
Fractional Exponents: $a^{\frac{b}{c}}=\sqrt[c]{a^{b}} \operatorname{or}(\sqrt[c]{a})^{b}$
Power Rule for Exponents: $\left(a^{b}\right)^{c}=a^{b c}$
$i^{2}=-1 ; i^{3}=-i ; i^{4}=1$
Perfect Square Trinomial: $a^{2}+2 a b+b^{2}=(a+b)^{2}$ and $a^{2}-2 a b+b^{2}=(a-b)^{2}$
Difference of Squares: $a^{2}-b^{2}=(a+b)(a-b)$
Completing the Sauare: $x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}$

Systems of Linear Equations

One solution: The lines intersect at one point.

If the slopes of two lines are different.

No solutions: The lines intersect nowhere.

If the slopes of two lines are the same (they are parallel) but the y -intercept is different.

Infinite Solutions: The lines intersect at infinite points (they are overlapping lines).
If the slopes and y-intercepts are the same for both lines.

Parabolas:

Standard Form: $f(x)=a x^{2}+b x+c$;
vertex $=\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$
y-intercept $=c ;$
x-intercepts $=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Sum of solutions $=\frac{-b}{a}$

Discriminant $=b^{2}-4 a c$; Pos=2 real roots Zero= 1 real root; Neg=2 imaginary roots

Factored Form: $f(x)=a(x-m)(x-n)$; x-intercepts are m and n;
x-coordinate of vertex $=\frac{m+n}{2}$

Polygons: (for this section, n is the number of sides)
Area of a trapezoid: $\frac{1}{2}\left(b_{1}+b_{2}\right) h$
Sum of the interior angles: $180(n-2)$
Sum of the exterior angles: 360°

Properties of Parallelogram

1. Opp sides are \| and \cong
2. Opp \angle 's are \cong
3. Consec \angle 's are supplementary
4. Each diagonal forms a pair of $\cong \Delta^{\prime}$'s
5. Diagonals bisect each other
\rightarrow If they are \cong it is a rectangle
\rightarrow If they are \perp it is a rhombus
6. Area = base \times height

Systems of Linear Inequalities

$y \leq 3 x+1$

$y>-x+2$

$y \leq 3 x+1$ and $y>-x+2$ graphed together.
The solution is the overlapping region.

Data and Probability:

$$
\begin{aligned}
& \text { average }=\frac{\text { sum_of_items }}{\text { number_of_items }} \\
& \text { median }=\text { middle_number }=\text { maximum }- \text { minimum } \\
& \text { probability }=\frac{\text { desired_outcomes }}{\text { possible_outcomes }}
\end{aligned}
$$

| | Data Set A | | Data Set A has a larger standard deviation than |
| :--- | :--- | :--- | :--- | :--- |
| Data Set B since the values are spread farther | | | |

Sample Size: A sample size of 30 is considered large enough to make accurate calculations for any size population. Still, the larger the sample, the more accurate the statistics are that can be calculated from it.

Graphing Lines:

Slope Formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Slope of horizontal line $=0$
Slope of vertical line = undefined

Similar Triangles

$A / E=B / F=C / G$

Angles:

Vertical \angle 's are \cong

\angle 's that form a linear pair are supplementary (add up to 180°)

Triangles:

The three \angle^{\prime} s of a Δ add up to 180°
An exterior \angle is equal to the sum of the two remote interior \angle ' s

Circles:

A radius and tangent make a right \angle

Standard Form: $A x+B y=C$
Slope-Intercept Form: $y=m x+b$
Point-Slope Form: $y-y_{1}=m\left(x-x_{1}\right)$
Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Midpoint Formula: $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Parallel lines: equal slopes
\perp Lines: slopes are opposite reciprocals
\angle 's that form a circle add up to 360°
When || lines are cut by a transversal, all acute \angle 's are \cong and all obtuse \angle 's are \cong

Pythagorean Triples: 3-4-5 and 5-12-13

A central \angle is double the inscribed \angle

$\frac{x}{360}=\frac{\text { arc }}{\text { circumference }} \quad$ and $\quad \frac{x}{360}=\frac{\text { sector }}{\text { area_of_circle }} \quad$ where $x=$ central angle

