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1  Complex Numbers 

Definitions and arithmetical operations 

i = √−1,  so  √−16 = 4𝑖, √−11  =  √11 i,  etc. 
These are called imaginary numbers 
 
Complex numbers are written as  z = a + bi,  where  a  and  b ∈ ℝ. 
a is the real part and  b  is the imaginary part. 
 
+, –, × are defined in the ‘sensible’ way; division is more complicated. 
 
(a + bi)  +  (c + di) = (a + c)  +  (b + d)i 
(a + bi)  –  (c + di) = (a – c)  +  (b – d)i 
(a + bi)  ×  (c + di) = ac  +  bdi 2  + adi + bci 
   = (ac – bd)  +  (ad +bc)i          since  i 2 = –1 
 
So   (3 + 4i)  –  (7 – 3i)   =    –4 + 7i 
and (4 + 3i) (2 – 5i)  =    23 – 14i 
 
 
Division – this is just rationalising the denominator. 
 

    3+4𝑖
5+2𝑖  = 3+4𝑖

5+2𝑖   × 5−2𝑖
5−2𝑖     multiply top and bottom by the complex conjugate 

 

  =  23+14𝑖
25+4

  =  23
29

+ 14
29
𝑖 

Complex conjugate 

z = a + bi 
The complex conjugate of z is  z* = 𝑧  =  a – bi 

Properties 

If z = a + bi  and  w = c + di, then 

(i) {(a + bi) + (c + di)}*  =  {(a + c) + (b + d)i}*  

  =  {(a + c) – (b + d)i} 

  =  (a – bi) + (c – di)   

 ⇔ (z + w)*  =  z* + w* 
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(ii) {(a + bi) (c + di)}* =  {(ac – bd) + (ad + bc)i}* 

=  {(ac – bd) – (ad + bc)i} 

=  (a – bi) (c – di)   

=  (a + bi)*(c + di)*   

⇔ (zw)*  =  z* w* 

Complex number plane, or Argand diagram 

We can represent complex numbers as points on the complex number plane: 

3 + 2i  as the point  A (3, 2),  and  –4 + 3i  as the point   (–4, 3). 

Complex numbers and vectors 

Complex numbers under addition (or subtraction) behave just like vectors under addition (or 
subtraction). We can show complex numbers on the Argand diagram as either points or 
vectors. 

(a + bi) + (c + di)  =  (a + c) + (b + d) i ⇔ �𝑎𝑏� +  �𝑐𝑑�   =  �𝑎 + 𝑐
𝑏 + 𝑑�

(a + bi) – (c + di)  =  (a – c) + (b – d) i ⇔ �𝑎𝑏� −  �𝑐𝑑�   =  �𝑎 − 𝑐
𝑏 − 𝑑�

or 

−5 5 10

−2

2

4

Real

Imaginary

A: (3, 2)
B: (-4, 3)

Re 

Im 

z1 

z2 
z1 + z2 

Re 

Im 

z1 

z2 

z1 – z2 
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Multiplication by i 

i(3 + 4i)  =  –4 + 3i   –  on an Argand diagram this would have the effect of a positive quarter 
turn about the origin. 

 

In general; 

i(a + bi)  =  –b + ai 

 

 

Modulus of a complex number 

This is just like polar co-ordinates. 

The modulus of z  is z and 

is  the length of the complex number   

 z  =  √𝑎2 + 𝑏2. 

z z*  =  (a + bi)(a – bi)  =  a2 + b2  

⇒ z z*  = z2. 

 

Argument of a complex number 

The argument of  z  is  arg z  =  the angle made by the complex number with the positive 
x-axis.  
By convention,  –π < arg z ≤ π .   

N.B.   Always draw a diagram when finding  arg z. 

 

Example: Find the modulus and argument of   z = –6 + 5i. 

Solution: First sketch a diagram (it is easy to get the argument wrong if you don’t). 
 

z  =  √62 + 52  =   √61 

and  tan α = 5
6
    ⇒   α = 0⋅694738276 

⇒ arg z  = θ  =  π – α  =  2.45      to 3 S.F. 

 

Re 

Im 

z 

iz x (a, b) 

x (–b, a) 

Re 

Im 

z 
x z = a + bi 

θ  

Re 

Im 

z  

x (–6, 5) 

θ  

6 

5 
α
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Equality of complex numbers 

 a + bi  =  c + di ⇒ a – c  =   (d – b)i 

⇒ (a – c)2  =  (d – b)2 i 2   =  – (d – b)2              squaring both sides 

But  (a – c)2  ≥ 0   and   – (d – b)2 ≤ 0 

⇒ (a – c)2  =   – (d – b)2 =  0 

⇒ a = c  and  b = d 

Thus    a + bi  =  c + di 

⇒ real parts are equal  (a = c),  and imaginary parts are equal  (b = d). 

 

Square roots 

Example: Find the square roots of   5 + 12i, in the form  a + bi,  a, b ∈ ℝ. 

Solution: Let    √5 + 12𝑖 =  a + bi   

 ⇒ 5 + 12i  =  (a + bi)2  =  a2 – b2  +  2abi 

Equating real parts  ⇒ a2 – b2  =  5,  I 

equating imaginary parts ⇒ 2ab   =  12    ⇒ a  =  6
𝑏
   

Substitute in  I     ⇒ �6
𝑏
�
2
−  𝑏2 = 5    

⇒ 36 – b4  =  5b2  ⇒ b4 + 5b2 – 36  =  0 

⇒ (b2 – 4)(b2 + 9) = 0 ⇒ 𝑏2 = 4 

⇒ b = ± 2,  and  a  = ± 3 

⇒ √5 + 12𝑖  =  3 + 2i   or   –3 – 2i . 

 

Roots of equations 

(a) Any polynomial equation with complex coefficients has a complex solution. 

The is The Fundamental Theorem of Algebra, and is too difficult to prove at this stage. 

Corollary: Any complex polynomial can be factorised into linear factors over the 
complex numbers. 
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(b) If  z = a + bi  is a root of   αn zn + αn–1 zn–1 + αn–2 zn–2 + … + α 2 z 2 + α 1 z  + α 0  = 0, 
 and if all the  α i  are real,  
 then the conjugate,  z* = a – bi  is also a root.  

 The proof of this result is in the appendix. 

(c) For any polynomial with zeros   a + bi,  a – bi,   
(z – (a + bi))(z – (a – bi))  =  z2 – 2az + a2 – b2  will be a quadratic factor in which the 
coefficients are all real. 

(d) Using (a), (b), (c) we can see that any polynomial with real coefficients can be factorised 
into a mixture of linear and quadratic factors, all of which have real coefficients. 

Example: Show that  3 – 2i  is a root of the equation  z3 – 8z2 + 25z – 26 = 0. 
Find the other two roots. 

Solution: Put z = 3 – 2i  in  z3 – 8z2 + 25z – 26 
= (3 – 2i)3 – 8(3 – 2i)2 + 25(3 – 2i) – 26 
= 27 – 54i + 36i 2  –  8i 3  – 8(9 – 12i + 4i 2) + 75 – 50i – 26 
= 27 – 54i  – 36   +   8i   –  72 +  96i  + 32   +  75 – 50i – 26  

= 27 – 36 – 72 + 32 + 75 – 26 + (–54 + 8 + 96 – 50)i 
= 0 + 0i 
⇒ 3 – 2i  is a root 
⇒ the conjugate,  3 + 2i,  is also a root             since all coefficients are real 

 ⇒ (z – (3 + 2i))(z – (3 – 2i))  =  z2 – 6z + 13   is a factor. 

 Factorising, by inspection, 

  z3 – 8z2 + 25z – 26  =  (z2 – 6z + 13)(z – 2) = 0 

 ⇒ roots are   z = 3 ± 2i, or 2    
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2 Numerical solutions of equations 

Accuracy of solution 

When asked to show that a solution is accurate to n D.P., you must look at the value of  f (x) 
‘half’ below and ‘half’ above, and conclude that 

there is a change of sign in the interval, and the function is continuous, therefore there 
is a solution in the interval correct to n D.P. 

Example:  Show that α  =  2⋅0946  is a root of the equation   
   f (x) = x3 – 2x – 5 = 0, accurate to 4 D.P. 

Solution:   

  f (2.09455) = –0⋅0000165…,   and   f (2.09465) = +0⋅00997 

  There is a change of sign and  f is continuous   

 ⇒  there is a root in [2⋅09455, 2⋅09465]  ⇒  root is  α = 2⋅0946  to 4 D.P. 

 

Interval bisection 

(i) Find an interval [a, b] which contains the root of an equation  f (x) = 0. 

(ii) x = 𝑎+𝑏
2

  is the mid-point of the interval [a, b] 

 Find  𝑓 �𝑎+𝑏
2
�  to decide whether the root lies in  �𝑎, 𝑎+𝑏

2
�  or  �𝑎+𝑏

2
, 𝑏� . 

(iii) Continue finding the mid-point of each subsequent  interval to narrow the interval which 
contains the root. 

 

Example: (i) Show that there is a root of the equation   
  f (x) = x3 – 2x – 7 = 0 in the interval  [2, 3].  
 (ii) Find an interval of width 0⋅25 which contains the root. 

 

Solution: (i) f (2) = 8 – 4 – 7  =  –3,   and  f (3) = 27 – 6 – 7 = 14 

 There is a change of sign and f is continuous  ⇒  there is a root in [2, 3]. 

 (ii) Mid-point of [2, 3]  is  x = 2⋅5, and  f (2⋅5) = 15⋅625 – 5 – 7 = 3⋅625 

  ⇒ change of sign between  x = 2 and x = 2⋅5   

⇒ root in  [2, 2⋅5] 
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   Mid-point of [2, 2⋅5]  is  x = 2⋅25,  
  and  f (2⋅25) = 11⋅390625 – 4⋅5 – 7 = –0⋅109375 

  ⇒ change of sign between  x = 2⋅25 and x = 2⋅5   

⇒ root in  [2⋅25, 2⋅5], which is an interval of width 0⋅25 

 

 

Linear interpolation 

To solve an equation   f (x)  using linear interpolation. 

First, find an interval which contains a root,  

second, assume that the curve is a straight line and use similar triangles to find where the line 
crosses the x-axis, 

third, repeat the process as often as necessary. 

 

Example: (i) Show that there is a root, α,  of the equation   
   f (x) = x3 – 2x – 9 = 0 in the interval  [2, 3].  
 (ii) Use linear interpolation once to find an approximate value of α.  
  Give your answer to 3 D.P. 

Solution: (i) f (2) = 8 – 4 – 9  =  –5,   and  f (3) = 27 – 6 – 9 = 12 

 There is a change of sign and f is continuous  ⇒  there is a root in [2, 3]. 

(ii) From (i), curve passes through (2, –5)  and  (3, 12), and we assume that the curve 
is a straight line between these two points. 

Let the line cross the x-axis at (α, 0) 

Using similar triangles 

3−𝛼
𝛼−2

= 12
5

   

⇒ 15 – 5α = 12α – 24 

⇒ α = 39
17

= 2 5
17

   

⇒ α =  2⋅294  to 3 D.P. 

  

Repeating the process will improve accuracy.  

(2, –5) 

(3, 12) 

2 

3 
5 

3 – α α 

12 

α – 2 
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Newton-Raphson 

 

Suppose that the equation  f (x) = 0 has a root at 
x = α,   ⇒  f (α) = 0 

To find an approximation for this root, we first find 
a value  x = a  near to  x = α  (decimal search). 

In general, the point where the tangent at  P, x = a, 
meets the x-axis, x = b, will give a better 
approximation. 

At P, x = a, the gradient of the tangent is  f ′(a), 

and the gradient of the tangent is also  𝑃𝑀
𝑁𝑀

. 

 PM = y = f (a)  and  NM = a – b 

⇒ f ′(a)  =  𝑃𝑀
𝑁𝑀

  =  𝑓(𝑎)
𝑎−𝑏

     ⇒ b  =  a –  𝑓(𝑎)
𝑓′(𝑎)

. 

Further approximations can be found by repeating the process, which would follow the dotted 
line converging to the point  (α, 0). 

This formula can be written as the iteration   xn +1 =  xn  –  
𝑓(𝑥𝑛)
𝑓′(𝑥𝑛)

    

Example: (i) Show that there is a root, α,  of the equation   
   f (x) = x3 – 2x – 5 = 0 in the interval  [2, 3].  

  (ii) Starting with  x0 = 2, use the Newton-Raphson formula to  
  find  x1,  x2   and  x3, giving your answers to  3 D.P. where appropriate. 

 

Solution: (i) f (2) = 8 – 4 – 5  =  –1,   and  f (3) = 27 – 6 – 5 = 16 

 There is a change of sign and f is continuous  ⇒  there is a root in [2, 3]. 

  (ii) f (x) = x3 – 2x – 5     ⇒ f ′ (x) = 3x2 – 2 

⇒     x1  =  x0 – 
𝑓(𝑥0)
𝑓′(𝑥0)

   =  2 – 8−4−5
12−2

  =  2⋅1 

⇒  x2  =  2⋅094568121  =  2⋅095 

⇒  x3  =  2⋅094551482  =  2⋅095  

 

α  

P  

M  N 
x 

y 

b a 

y = f (x) 
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3 Coordinate systems 

Parabolas 

y2 = 4ax is the equation of a parabola which passes 
through the origin and has the x-axis as an axis of 
symmetry. 

Parametric form 

x = at2,   y = 2at    satisfy the equation for all values of t.  
t is a parameter, and these equations are the parametric 
equations of the parabola  y2 = 4ax. 

 

Focus and directrix 

The point  S (a, 0) is the focus, and 

the line  x = – a  is the directrix. 

Any point P of the curve is equidistant from the focus and the directrix,  PM = PS. 

Proof:  PM    =  at2 – (–a)  =  at2 + a 

  PS 2   =  (at2 – a)2 + (2at)2  =  a2t4 – 2a2t2 + a2  + 4a2t2 

   =  a2t4 + 2a2t2 + a2  =  (at2 + a)2  =  PM 2 

 ⇒ PM  =  PS. 

 

Gradient 

For the parabola  y2 = 4ax, with general point P, (at2, 2at), we can find the gradient in two 
ways: 

1. y2 = 4ax    
⇒ 2y 𝑑𝑦

𝑑𝑥
  =  4a ⇒ 𝑑𝑦

𝑑𝑥
  =  2𝑎

𝑦
 ,  which we can write as  𝑑𝑦

𝑑𝑥
  =  2𝑎

2𝑎𝑡
 =   1

𝑡
 

2. At P,  x = at2,  y = 2at 
⇒ 𝑑𝑦

𝑑𝑡
 = 2a,    𝑑𝑥

𝑑𝑡
  = 2at 

⇒ 𝑑𝑦
𝑑𝑥

  =  
𝑑𝑦

𝑑𝑡�
𝑑𝑥

𝑑𝑡�
 =   2𝑎

2𝑎𝑡
 =   1

𝑡
  

 

x

y

directrix
   x=−a

   X
focus
S (a, 0)

M X   P (at , 2at)2
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Tangents and normals 

Example: Find the equations of the tangents to  y2 = 8x  at the points where x = 18, and 
show that the tangents meet on the x-axis. 

Solution: x = 18     ⇒ y2 = 8 × 18 ⇒   y = ±12 

 2y 𝑑𝑦
𝑑𝑥

  =  8     ⇒   𝑑𝑦
𝑑𝑥

 =  ± 1
3
          since  y = ±12 

⇒ tangents are y – 12 = 1
3
 (x – 18) ⇒ x – 3y + 18 = 0          at (18, 12) 

 and  y + 12 = −1
3
 (x – 18) ⇒ x + 3y + 18 = 0.                 at (18, –12) 

To find the intersection, add the equations to give 

 2x + 36 = 0 ⇒   x = –18 ⇒  y = 0 

⇒ tangents meet at (–18, 0)  on the x-axis. 

 

Example: Find the equation of the normal to the parabola given by  x = 3t2,  y = 6t. 

Solution: x = 3t2,  y = 6t ⇒ 𝑑𝑥
𝑑𝑡

  = 6t,    𝑑𝑦
𝑑𝑡

 = 6,     

⇒ 𝑑𝑦
𝑑𝑥

  =  
𝑑𝑦

𝑑𝑡�
𝑑𝑥

𝑑𝑡�
 =   6

6𝑡
 =   1

𝑡
   

⇒ gradient of the normal is  −1 
1
𝑡

   =  –t 

⇒ equation of the normal is   y – 6t  =  –t(x – 3t2). 
 

Notice that this ‘general equation’ gives the equation of the normal for any particular 
value of  t:–  when  t = –3  the normal is y + 18 = 3(x – 27)  ⇔  y = 3x – 99. 

 

Rectangular hyperbolas 

A rectangular hyperbola is a hyperbola in which the 
asymptotes meet at 90o. 

xy = c2 is the equation of a rectangular hyperbola in 
which the x-axis and y-axis are perpendicular 
asymptotes. 

 

x

y

 xy = c2
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Parametric form 

x = ct,   y = 𝑐
𝑡
    are parametric equations of the hyperbola  xy = c2. 

Tangents and normals 

Example: Find the equation of the tangent to the hyperbola   xy = 36  at the point where 
x = 3. 

Solution: x = 3     ⇒ 3y = 36 ⇒   y = 12 

 y = 36
𝑥

     ⇒   𝑑𝑦
𝑑𝑥

 =  – 36
𝑥2

 = –4              when x = 3 

⇒ tangent is y – 12 = –4(x – 3) ⇒ 4x + y – 24 = 0. 

 

Example: Find the equation of the normal to the hyperbola given by  x = 3t,  y = 3
𝑡
. 

Solution: x = 3t,  y = 3
𝑡
   ⇒ 𝑑𝑥

𝑑𝑡
  = 3,    𝑑𝑦

𝑑𝑡
 =  −3

𝑡2
     

⇒ 𝑑𝑦
𝑑𝑥

  =  
𝑑𝑦

𝑑𝑡�
𝑑𝑥

𝑑𝑡�
 =   

−3
𝑡2

3
 =   −1

𝑡2
   

⇒ gradient of the normal is     −1   
−1
𝑡2

   =   t2 

⇒ equation of the normal is   y – 3
𝑡
   =  t2(x – 3t) 

⇒ t3x – ty =  3t4 – 3. 
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4 Matrices 

You must be able to add, subtract and multiply matrices. 

Order of a matrix 

An  r × c matrix has r rows and c columns;  

the fiRst number is the number of Rows  

the seCond number is the number of Columns. 

Identity matrix 

The identity matrix is  I = �1 0
0 1�. 

Note that  MI = IM = M for any matrix M. 

 

Determinant and inverse 

Let  M  =  �𝑎 𝑏
𝑐 𝑑� then the determinant of  M  is   

Det M = | M |  =  ad – bc. 

 

To find the inverse of   M  =  �𝑎 𝑏
𝑐 𝑑� 

Note that  M –1M =  M M –1  = I 

(i) Find the determinant,  ad – bc.   
If   ad – bc = 0, there is no inverse. 

(ii) Interchange   a  and  d (the leading diagonal) 
 Change sign of  b  and  c, (the other diagonal) 
 Divide all elements by the determinant,  ad – bc. 

⇒ 𝑴−1 =
1

𝑎𝑑−𝑏𝑐 � 𝑑 −𝑏
−𝑐 𝑎 �. 

Check:  

M –1M =  
1

𝑎𝑑−𝑏𝑐 � 𝑑 −𝑏
−𝑐 𝑎 � �𝑎 𝑏

𝑐 𝑑�  =  
1

𝑎𝑑−𝑏𝑐 �𝑑𝑎 − 𝑏𝑐 0
0 −𝑐𝑏 + 𝑎𝑑� =  �1 0

0 1� = 𝑰 

Similarly we could show that  M M –1  = I. 
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Example: M  =  �4 2
5 3�   and  MN  =  �−1 2

2 1�.  Find N. 

Solution: Notice that  M –1 (MN) =  (M –1M)N = IN = N       multiplying on the left by M –1 

  But  MNM –1 ≠  IN        we cannot multiply on the right by M –1 

 First find  M –1  

  Det M  =  4 × 3 – 2 × 5 = 2 ⇒ 𝑴−1 =
1
2 � 3 −2
−5 4 � 

 Using  M –1 (MN) = IN = N 

⇒ N =
1
2 � 3 −2
−5 4 � �−1 2

2 1� = 
1
2 �−7 4

13 −6�  =  �−3 ∙ 5 2
6 ∙ 5 −3� . 

 

Singular and non-singular matrices 

If  det A = 0, then  A  is a singular matrix, and  A–1 does not exist. 

If  det A ≠ 0, then  A  is a non-singular matrix, and  A–1 exists 

 

Linear Transformations 

A matrix can represent a transformation, but the point must be written as a column vector 
before multiplying by the matrix. 

Example: The image of  (2, 3)  under  T = �4 5
1 2�  is given by  �4 5

1 2� �
2
3�  = �23

8 �    

 ⇒ the image of   (2, 3)  is  (23, 8). 

Note that the image of  (0, 0)  is always  (0, 0)   

⇔  the origin never moves under a matrix (linear) transformation 

Basis vectors 

The vectors  i = �1
0� and  j  = �0

1� are called  basis  vectors, and are particularly important in 

describing the geometrical effect of a matrix, and in finding the matrix for a particular 
geometric transformation. 

�𝑎 𝑏
𝑐 𝑑� �

1
0� = �𝑎𝑐�     and    �𝑎 𝑏

𝑐 𝑑� �
0
1� = �𝑏𝑑�      

i = �1
0� → �𝑎𝑐�,  the first column, and   j  = �0

1� → �𝑏𝑑�,  the second column 

This is a more important result than it seems! 
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Finding the geometric effect of a matrix transformation 

 We can easily write down the images of  i  and  j, sketch them and find the geometrical 
transformation. 

Example: Find the transformation represented by the matrix  𝑻 =  �2 0
0 3� 

Solution: Find images of  i, j  and  �1
1�, and show on a 

sketch. Make sure that you letter the points 

�2 0
0 3� �

1 0 1
0 1 1� = �2 0 2

0 3 3�  

From sketch we can see that the transformation is a 
two-way stretch, of factor 2 parallel to the x-axis 
and of factor 3 parallel to the y-axis. 

Finding the matrix of a given transformation.  

Example: Find the matrix for a shear with factor 2 and invariant line the x-axis. 

Solution: Each point is moved in the x-direction by a  
distance of  (2 × its y-coordinate).  

i  = �1
0�  →  �1

0�  (does not move as it 

is on the invariant line). 
This will be the first column of the 

matrix  �1 ∗
0 ∗� 

j  = �0
1�  →  �2

1�.  This will be the second 

column of the matrix  �∗ 2
∗ 1� 

⇒ Matrix of the shear is   �1 2
0 1�. 

 

Example: Find the matrix for a reflection in y = –x.  

Solution: First find the images of i  and  j .  These will be 
the two columns of the matrix. 

A  → A′    ⇒    i  = �1
0�  →  � 0

−1�.   

This will be the first column of the matrix  � 0 ∗
−1 ∗� 

 

3

    
  

2

 

4

 

A

 

B

 

C

 

A'

 

B'

 

C'

 

x

 

y

1 2 3

1

x

y

A, A'

C C'B B'

x

y

A (1, 0)

B (0, 1)

A' (0, −1)

B' (−1, 0)
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B  → B′    ⇒    j  = �0
1�  →  �−1

0 �.   

This will be the second column of the matrix  �∗ −1
∗ 0 � 

⇒ Matrix of the reflection is  � 0 −1
−1 0 �. 

 

Rotation matrix 

From the diagram we can see that  

i  = �1
0�  →  �cos 𝜃

sin𝜃�  , 

j  = �0
1�  →  �− sin𝜃

cos 𝜃 � 

These will be the first and second 
columns of the matrix 

⇒ matrix is  𝑅𝜃 =  �cos 𝜃 − sin 𝜃
sin𝜃 cos 𝜃 �. 

 

Determinant and area factor 

For the matrix   𝐴 =  �𝑎 𝑏
𝑐 𝑑� 

�𝑎 𝑏
𝑐 𝑑� �

1
0� = �𝑎𝑐�     

and    �𝑎 𝑏
𝑐 𝑑� �

0
1� = �𝑏𝑑�      

⇒ the unit square is mapped on to the 
parallelogram as shown in the diagram. 

The area of the unit square =  1. 

The area of the parallelogram = (a + b)(c + d) – 2 × (bc + 1
2
 ac + 1

2
 bd) 

  = ac + ad + bc + bd – 2bc – ac – bd 

  = ad – bc     =  det A. 

All squares of the grid are mapped onto congruent parallelograms  

⇒ area factor of the transformation is  det A  = ad – bc. 

A (1, 0) 

A′ (cosθ , sinθ) 

B (0, 1) 
           B′  
(–sinθ, cosθ) 

x 

y 

θ  

θ  

cosθ  

cosθ  
sinθ  

sinθ  

×
  

×
  ×

  ×
  

b 

d 

c 

a 

(b, d) 
(a, c) 

b 

d 

c 

a 

x 

y 

1 
1 
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5 Series 

You need to know the following sums 

�𝑟
𝑛

𝑟=1

= 1 + 2 + 3 + ⋯+ 𝑛 =   
1
2
𝑛(𝑛 + 1) 

�𝑟2
𝑛

𝑟=1

= 12 + 22 + 32 + ⋯+ 𝑛2  =   
1
6
𝑛(𝑛 + 1)(2𝑛 + 1) 

�𝑟3
𝑛

𝑟=1

= 13 + 23 + 33 + ⋯+ 𝑛3  =   
1
4
𝑛2(𝑛 + 1)2      

   

  = �1
2
𝑛(𝑛 + 1)�

2
=         a fluke, but it helps to remember it 

 

Example: Find             . 

 
Solution:  
 
 = 1

4
𝑛2(𝑛 + 1)2  −   3 × 1

2
𝑛(𝑛 + 1) 

= 1
4
𝑛(𝑛 + 1){𝑛(𝑛 + 1) −   6}    

= 1
4
𝑛(𝑛 + 1)(𝑛 + 3)(𝑛 − 2) 

 

Example: Find    Sn =  22 + 42 + 62 + … + (2n)2. 

 

Solution: Sn =  22 + 42 + 62 + … + (2n)2  =  22(12 + 22 + 32 + … + n2) 

 =   4 × 1
6
𝑛(𝑛 + 1)(2𝑛 + 1)  =  2

3
𝑛(𝑛 + 1)(2𝑛 + 1) . 

 

Example: Find     

 

Solution:                       notice that the top limit is 4 not 5 

 

 = 1
6

(𝑛 + 2)(𝑛 + 2 + 1)(2(𝑛 + 2) + 1) − 1
6

  × 4 × 5 × 9   

 = 1
6

(𝑛 + 2)(𝑛 + 3)(2𝑛 + 5) − 30. 

�𝑟(𝑟2 − 3)
𝑛

𝑟=1

 

��𝑟
𝑛

𝑟=1

�
2

 

�𝑟(𝑟2 − 3)
𝑛

𝑟=1

=   �𝑟3
𝑛

𝑟=1

−  3�𝑟
𝑛

𝑟=1

 

�𝑟2
𝑛+2

𝑟=5

 

�𝑟2
𝑛+2

𝑟=5

 =  �𝑟2
𝑛+2

𝑟=1

 −  �𝑟2
4

𝑟=1
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   6 Proof by induction 

1. Show that the result/formula is true for  n = 1  (and sometimes n = 2 , 3 ..). 
Conclude  
 “therefore the result/formula ………. is true for  n = 1”. 
 

2.  Make induction assumption 
 “Assume that the result/formula ………. is true for  n = k”. 
Show that the result/formula must then be true for  n = k + 1 
Conclude  
 “therefore the result/formula ………. is true for  n = k + 1”. 
 

3. Final conclusion  
 “therefore the result/formula ………… is true for all positive integers, n, by 
 mathematical induction”. 

Summation 

Example: Use mathematical induction to prove that 

  Sn = 12 + 22 + 32 + … + n2  =  1
6
𝑛(𝑛 + 1)(2𝑛 + 1)   

Solution: When n = 1,  S1 = 12 = 1   and   S1 = 1
6

× 1(1 + 1)(2 × 1 + 1) =  1
6

× 1 × 2 × 3 = 1    

⇒ Sn =  1
6
𝑛(𝑛 + 1)(2𝑛 + 1)   is true for  n = 1. 

Assume that the formula is true for  n = k 

⇒ Sk  = 12 + 22 + 32 + … + k2  =  1
6
𝑘(𝑘 + 1)(2𝑘 + 1)   

⇒ Sk + 1 =  12 + 22 + 32 + … + k2
 + (k + 1)2  =  1

6
𝑘(𝑘 + 1)(2𝑘 + 1) + (k + 1)2   

  =  1
6

(𝑘 + 1){𝑘(2𝑘 + 1) + 6(𝑘 + 1)} 

  =  1
6

(𝑘 + 1){2𝑘2 + 7𝑘 + 6}  =  1
6

(𝑘 + 1)(𝑘 + 2)(2𝑘 + 3) 

  =  1
6

(𝑘 + 1){(𝑘 + 1) + 1}{2(𝑘 + 1) + 1} 

⇒ The formula is true for  n = k + 1 

⇒ Sn =  1
6
𝑛(𝑛 + 1)(2𝑛 + 1)   is true for all positive integers, n, by mathematical 

induction.  
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Recurrence relations 

Example: A sequence, 4, 9, 19, 39, … is defined by the recurrence relation 

u1 = 4,  un + 1 = 2un + 1. Prove that  un = 5 × 2n − 1 − 1.   

Solution: When  n = 1, u1 = 4,  and  u1 = 5 × 21−1 − 1 = 5 − 1 = 4,  ⇒ formula true for n = 1. 

Assume that the formula is true for  n = k,  ⇒  uk = 5 × 2k − 1 − 1. 

From the recurrence relation,    

uk + 1  =   2uk + 1  =  2(5 × 2k − 1 − 1) + 1 

⇒ uk + 1 =   5 × 2k  − 2  + 1  =    5 × 2 (k + 1) − 1  − 1   

⇒ the formula is true for  n = k + 1 

⇒ the formula is true for all positive integers, n, by mathematical induction. 

Divisibility problems 

Considering  f (k + 1)  −  f (k), will lead to a proof which sometimes has hidden difficulties,  

and a more reliable way is to consider   f (k + 1)  −  m × f (k),  where  m  is chosen to eliminate 
the exponential term. 

Example: Prove that  f (n)  =  5n − 4n − 1 is divisible by 16 for all positive integers, n. 

Solution: When  n = 1,  f (1)  =  51 − 4 − 1 = 0,  which is divisible by 16, and so f (n)  is 
divisible by  16  when  n = 1. 

Assume that the result is true for  n = k,  ⇒  f (k)  =  5k − 4k − 1  is divisible by 16. 

Considering  f (k + 1)  −  5 × f (k)  we will eliminate the  5k  term. 

  f (k + 1)  −  5 × f (k)   =   (5k + 1 − 4(k + 1) − 1) − 5 × (5k − 4k − 1) 

     =   5k + 1 − 4k − 4 − 1  −  5k + 1 + 20k + 5  =  16k 

⇒ f (k + 1)  =  5 × f (k)  + 16k 

Since  f (k)  is divisible by 16 (induction assumption), and  16k  is divisible by 16, then  
f (k + 1)  must be divisible by 16,   

⇒ f (n)  =  5n − 4n − 1 is divisible by 16 for  n = k + 1 

⇒ f (n)  =  5n − 4n − 1 is divisible by 16 for all positive integers, n, by mathematical 
induction. 
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Example: Prove that  f (n)  =  22n + 3  +  32n − 1  is divisible by  5  for all positive integers n. 

Solution: When  n = 1,  f (1)  =  22 + 3  +  32 − 1  =  32 + 3  =  35  =  5 × 7, and so the result is 
true for  n = 1. 

Assume that the result is true for  n = k 

⇒ f (k)  =  22k + 3  +  32k − 1  is divisible by  5   

We could consider either (it does not matter which) 

f (k + 1)  −  22 × f (k),   which would eliminate the  22k + 3  term  I 

or f (k + 1)  −  32 × f (k),   which would eliminate the  32k − 1  term  II 

I  ⇒ f (k + 1)  −  22 × f (k)  =    22(k + 1) + 3  +  32(k + 1) − 1  − 22 × (22k + 3  +  32k − 1) 

     =     22k + 5 + 32k + 1   −  22k + 5  −  22 × 32k − 1 

⇒ f (k + 1)  −  4 × f (k) =     9 × 32k − 1  − 4 × 32k − 1  =  5 × 32k − 1 

⇒ f (k + 1)  =  4 × f (k)  −  5 × 32k − 1 

Since  f (k)  is divisible by 5 (induction assumption), and  5 × 32k − 1  is divisible by 5, 
then  f (k + 1)  must be divisible by 5. 

⇒ f (n)  =  22n + 3  +  32n − 1  is divisible by  5  for all positive integers, n, by 
mathematical induction. 

 

Powers of matrices 

Example: If  𝑀 =  �2 −1
0 1 �,   prove that  𝑀𝑛 =  �2𝑛 1 − 2𝑛

0 1 �  for all positive integers n. 

Solution: When  n = 1,  𝑀1 =  �21 1 − 21
0 1

�  = �2 −1
0 1 �  = 𝑀   

⇒  the formula is true for n = 1. 

Assume the formula is true for  n = k   ⇒   𝑀𝑘 =  �2𝑘 1 − 2𝑘
0 1

� . 

 𝑀𝑘+1 =  𝑀𝑀𝑘  =  �2 −1
0 1 � �2𝑘 1 − 2𝑘

0 1
�   =  �2 × 2𝑘 2 − 2 × 2𝑘 − 1

0 1
� 

⇒ 𝑀𝑘+1 =   �2𝑘+1 1 − 2𝑘+1
0 1

�      ⇒ The formula is true for  n = k + 1 

⇒ 𝑀𝑛 =  �2𝑛 1 − 2𝑛
0 1 �  is true for all positive integers, n, by mathematical 

induction.  



  22  FP1  JUNE  2016  SDB  

7 Appendix 

Complex roots of a real polynomial equation 

Preliminary results: 

I (z1 + z2 + z3 + z4 + … + zn)*  =  z1* + z2* + z3* + z4* + … + zn*,   

 by repeated application of   (z + w)*  =  z* + w*  

II (zn)*  =  (z*) n 

(zw)* = z*w*   

⇒  (zn)*  = (zn-1z)*  = (zn-1)*(z)*  = (zn-2z)*(z)*  = (zn-2)*(z)*(z)*  … = (z*) n 

 

Theorem: If z = a + bi  is a root of   αn zn + αn–1 zn–1 + αn–2 zn–2 + … + α 2 z 2 + α 1 z  + α 0  = 0, 
 and if all the  α i  are real,  
 then the conjugate,  z* = a – bi  is also a root. 

Proof:  If  z = a + bi  is a root of the equation  αn zn + αn–1 zn–1 + … + α 1 z  + α 0  = 0 

then αn zn + αn–1 zn–1 + … + α 2 z 2 + α 1 z  + α 0  = 0 

⇒ (αn zn + αn–1 zn–1 + … + α 2 z 2 + α 1 z  + α 0)*  = 0                  since 0* = 0 

⇒ (αn zn)* + (αn–1 zn–1)* + … + (α 2 z 2)* + (α 1 z)*  + (α 0)*  = 0                using I 

⇒ αn*( zn)* + αn–1*(zn–1)* + …+ α 2*( z 2)* + α 1*( z)*  + α 0* = 0      since (zw)* = z*w* 

⇒ αn( zn)* + αn–1(zn–1)* + … + α 2( z2)*+ α 1( z)*  + α 0 = 0         αi real  ⇒  αi* = αi     

⇒ αn( z*) n + αn–1(z*) n–1 + … + α 2(z*)2 + α 1(z*)  + α 0 = 0                      using II 

⇒ z* = a – bi  is also a root of the equation. 

 

Formal definition of a linear transformation 

A linear transformation T has the following properties: 

(i) 𝑻�𝑘𝑥𝑘𝑦�  = 𝑘𝑻 �
𝑥
𝑦�  

(ii) 𝑻��
𝑥1
𝑦1� + �

𝑥2
𝑦2��  = 𝑻�

𝑥1
𝑦1� + 𝑻�

𝑥2
𝑦2�  

It can be shown that any matrix transformation is a linear transformation, and that any linear 
transformation can be represented by a matrix. 
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Derivative of xn, for any integer 

We can use proof by induction to show that 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1, for any integer n. 

1) We know that the derivative of  x0  is  0  which equals  0x−1,  

since  x0 = 1, and the derivative of  1  is 0 

⇒ 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1  is true for  n = 0. 

2) We know that the derivative of  x1  is 1  which equals  1 × x1 – 1 

⇒ 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1  is true for  n = 1 

Assume that the result is true for  n = k 

⇒ 𝑑
𝑑𝑥

(𝑥𝑘)       =  𝑘𝑥𝑘−1   

⇒ 𝑑
𝑑𝑥

(𝑥𝑘+1)   =  𝑑
𝑑𝑥

(𝑥 × 𝑥𝑘) = 𝑥 × 𝑑
𝑑𝑥

(𝑥𝑘) +  1 × 𝑥𝑘          product rule 

⇒ 𝑑
𝑑𝑥

(𝑥𝑘+1)   =  𝑥 × 𝑘𝑥𝑘−1 + 𝑥𝑘 = 𝑘𝑥𝑘 + 𝑥𝑘 = (𝑘 + 1)𝑥𝑘   

⇒ 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1  is true for  n = k + 1 

⇒ 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1  is true for all positive integers, n, by mathematical induction. 

 3) We know that the derivative of  x−1  is  −x−2   which equals  −1 × x−1 – 1 

⇒ 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1  is true for  n = −1 

Assume that the result is true for  n = k 

⇒ 𝑑
𝑑𝑥

(𝑥𝑘)       =  𝑘𝑥𝑘−1   

⇒ 𝑑
𝑑𝑥

(𝑥𝑘−1)   =  𝑑
𝑑𝑥
�𝑥

𝑘

𝑥
� =

𝑥× 𝑑
𝑑𝑥�𝑥

𝑘�  −  𝑥𝑘×1

𝑥2
             quotient rule 

⇒ 𝑑
𝑑𝑥

(𝑥𝑘+1)   =  𝑥×𝑘𝑥𝑘−1  −  𝑥𝑘

𝑥2
 =   (𝑘−1)𝑥𝑘

𝑥2
= (𝑘 − 1)𝑥𝑘−2 =  (𝑘 − 1)𝑥(𝑘−1)−1 

⇒ 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1  is true for  n = k − 1 

We are going backwards (from  n = k  to  n = k − 1), and, since we started from  n = −1, 

⇒ 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1  is true for all negative integers, n, by mathematical induction. 

Putting 1), 2) and 3), we have proved that 

𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1, for any integer n. 
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8 Index 

Complex numbers 
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singular, 15 
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area factor, 17 
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Numerical solutions of equations 
accuracy of solution, 8 
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linear interpolation, 9 
Newton Raphson method, 10 
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Proof by induction 
divisibility problems, 20 
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recurrence relations, 20 
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1  Inequalities 

Algebraic solutions 

Remember that if you multiply both sides of an inequality by a negative number, you must turn 

the inequality sign round:    2x  >  3    2x  <  3. 

A difficulty occurs when multiplying both sides by, for example,  (x  2); this expression is 

sometimes positive (x > 2), sometimes negative (x < 2) and sometimes zero (x = 2). In this case 

we multiply both sides by  (x  2)
2
, which is always positive (provided that  x ≠ 2). 

Example 1: Solve the inequality         
  

   
              

Solution: Multiply both sides by  (x  2)
2 

   we can do this since (x  2) ≠ 0 

                        DO NOT MULTIPLY OUT 

                        

                      

                      

                

 

Note – care is needed when the inequality is  ≤  or  ≥. 

Example 2: Solve the inequality   
 

   
 

 

   
 ,  x ≠ 1,  x ≠ 3 

Solution: Multiply both sides by  (x + 1)
2
(x + 3)

2
  which cannot be zero 

                             DO NOT MULTIPLY OUT 

                               

                          

                          

from sketch it looks as though the solution is 

                                 

BUT since  x ≠ 1,  x ≠ 3,  

the solution is                                        

 

−5

 

−4

 

−3

 

−2

 

−1

 

1

 

2

 

3

 

4

 

5

 

6

 

−10

 

10

 

20

x

y

 

−5

 

−4

 

−3

 

−2

 

−1

 

1

 

2

 

3

 

4

 

5

 

6

 

−10

 

10

 

20

x

y
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Graphical solutions 

Example 1: On the same diagram sketch the graphs of    
  

   
             . 

Use your sketch to solve the inequality    
  

   
  ≥  x  2  

Solution: First find the points of intersection of the two graphs 

 
  

   
  =  x  2  

             

              

             

From the sketch we see that       

                  .    Note that  x  –3 

 

For inequalities involving   2x  5  etc., it is often essential to sketch the graphs first. 

 

Example 2: Solve the inequality   x
2
  19  <  5(x  1). 

Solution: It is essential to sketch the curves first in order to see which solutions are needed. 

 

 

 

 

 

 

 

To find the point  A,  we need to solve 

              
            

                                  

From the sketch  x ≠ 8  x = 3 

 

 

−10

 

−5

 

5

 

10

 

20

 

40

x

y

A

B

 

−16

 

−12

 

−8

 

−4

 

4

 

8

 

12

 

−4

 

4

 

8

x

y
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To find the point  B,  we need to solve 

              
            

                                  

From the sketch  x ≠ 2  x = 7 

and the solution of  x
2
  19  <  5(x  1)  is    3 < x < 7 

 

 

 

 

 

2 Series  Method of Differences 

The trick here is to write each line out in full and see what cancels when you add. 

Do not be tempted to work each term out – you will lose the pattern which lets you cancel when 

adding. 

Example 1: Write   
 

      
  in partial fractions, and then use the method of differences to find 

the sum      
 

      

 

   
  =  

 

   
 

 

   
 

 

   
   

 

      
 . 

Solution:             
 

      
       

 

 
       

 

   
 

put  r = 1        
 

   
            

 

 
         

 

 
 

put  r = 2        
 

   
            

 

 
         

 

 
 

put  r = 3        
 

   
            

 

 
         

 

 
 

etc. 

put  r = n      
 

      
         

 

 
         

 

   
 

   

adding       
 

      

 
    =              
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Example 2: Write   
 

           
  in partial fractions, and then use the method of differences to 

find the sum      
 

           

 

   
  =  

 

     
 

 

     
 

 

     
   

 

           
 . 

Solution:               
 

           
     

 

 
       

 

   
     

 

   
 

put  r = 1             
 

     
            

 

 
         

 

 
         

 

 
 

put  r = 2             
 

     
            

 

 
         

 

 
         

 

 
 

put  r = 3             
 

     
            

 

 
         

 

 
         

 

 
 

put  r = 4             
 

     
            

 

 
         

 

 
         

 

 
 

 

etc. 

 

put  r = n 1     
 

           
        

 

   
     

 

 
      

 

   
 

put  r = n          
 

           
         

 

 
      

 

   
     

 

   
 

  

adding       
 

           

 
    =    

 

 
   

 

 
 

 

 
  

 

   
 

 

   
 

 

   
 

        =   
 

 
  

 

   
 

 

   
 

        =    
                 

           
 

      
 

           

 
    =    

     

           
 

      
 

           

 
    =    
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3 Complex Numbers 

Modulus and Argument 

 

The modulus of  z = x + iy   is the length of  z 

    r  =   z   =        

and the argument of  z  is the angle made by  z 

with the positive  x-axis, between   –π  and  π. 

N.B.  arg z  is not always equal to        
 

 
  

Properties 

z  =  r cos   +  i r sin  

 zw   =   z   w ,     and       
 

 
   

   

   
 

arg (zw)  =  arg z  +  arg w,    and     arg  
 

 
   =  arg z  –  arg w 

 

Euler’s Relation   ei 

z  =  e 
i

    =   cos   +  i sin  

 

 
  =  e 

–i
   =  cos   –  i sin  

Example: Express     
   

 
 
  in the form  x + iy. 

Solution:      
   

 
 
   =        

  

 
        

  

 
   

 =  
    

 
     

   

 
 

 

Multiplying and dividing in mod-arg form 

                        

                                                                 

and 

             
 

 
          

                                       
 

 
             

 

 
           

y 

x 

z 

r 

 

x 

y 
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De Moivre’s Theorem 

      
 

                                                      

Applications of De Moivre’s Theorem 

Example: Express   sin 5  in terms of  sin   only. 

Solution: From De Moivre’s Theorem we know that     

cos 5  +  i sin 5   =  (cos  + i sin  )
5

   

=  cos
5  + 5i cos

4  sin  + 10i
2
 cos

3  sin
2  + 10i

3
 cos

2  sin
3  + 5i

4
 cos  sin

4  + i
5
 sin

5  

Equating complex parts 

 sin 5  =  5cos
4  sin  – 10 cos

2  sin
3  +  sin

5 

  =  5(1 – sin
2 )

2
 sin  –  10(1 – sin

2) sin
3  + sin

5  

  =  16 sin
5   –  20 sin

3  +  5 sin  

   
 

      2 cos n    and      
 

   2 i sin n  

z  =  cos  + i sin  

                                      

and  
 

                                 

from which we can show that 

   
 

 
            and       

 

 
         

     
 

      2 cos n       and        
 

      2i sin n        

 

Example: Express  sin
5   in terms of   sin 5 ,  sin 3   and  sin . 

Solution: Here we are dealing with  sin , so we use 

                  
 

 
 

 

 

                =            
 

 
         

 

     – 10   
 

        
 

      
 

          

                  =                
 

  
         

 

  
         

 

 
  

                  =     2i sin 5    –  5 × 2i sin 3   + 10 × 2i sin  

 sin
5    =    
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nth roots of a complex number 

The technique is the same for finding  n
th

  roots of any complex number. 

Example: Find the 4
th

 roots of  4 + 4i, and show the roots on an Argand Diagram. 

Solution: We need to solve the equation    z
4
 = 4 + 4i 

1. Let  z  =  r cos  + i r sin  

 z
4
  =  r 

4
 (cos 4  + i sin 4) 

2.  4 + 4i  =        =           and     arg (4 + 4i)  =  
 

 
 

 4 + 4i  =      (cos 
 

 
  + i sin 

 

 
) 

3. Then   z
4
 = 4 + 4i 

becomes    r 
4
 (cos 4  + i sin 4)   =       (cos 

 

 
  + i sin 

 

 
) 

     =       (cos 
  

 
  + i sin 

  

 
)  adding 2π 

     =       (cos 
   

 
  + i sin 

   

 
)  adding 2π 

     =       (cos 
   

 
  + i sin 

   

 
)  adding 2π 

 

4.  r
 4

  =      

and 4   =  
 

 
 ,    

  

 
 ,    

   

 
 ,    

   

 
 

 r    =     
 

   =   1.5422 

and    =   
 

  
 ,    

  

  
 ,    

   

  
 ,    

   

  
 

 

5.  roots are       
 

 (cos 
 

  
  + i sin 

 

  
)     =     1.513  +  0.301 i 

      
 

 (cos 
  

  
  + i sin 

  

  
)       =    –0.301 + 1.513 i 

      
 

 (cos 
   

  
  + i sin 

   

  
)     =    –1.513  – 0.301 i   

      
 

 (cos 
   

  
  + i sin 

   

  
)     =     0.301   – 1.513 i 

 

 

 

 

 

Notice that the roots are symmetrically placed around the origin, and the angle between 

roots is  
  

 
    

 

 
   The angle between the n

th
  roots will always be   

  

 
  . 

For sixth roots the angle between roots will be  
  

 
    

 

 
 ,  and so on. 

 

−4

 

−2

 

2

 

4

 

−2

 

−1

 

1

 

2

x

y
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Roots of polynomial equations with real coefficients 

1. Any polynomial equation with real coefficients, 

          
          

           
             ,     ……..  (I) 

where all   ai   are real, has a complex solution 

2.     any complex n
th

 degree polynomial can be factorised into n linear factors over the 

complex numbers 

3. If  z = a + ib  is a root of  (I), then its conjugate, a – ib  is also a root. 

4. By pairing factors with conjugate pairs we can say that any polynomial with real 

coefficients can be factorised into a combination of linear and quadratic factors over the 

real numbers. 

Example: Given that  3  2i  is a root of   z
3
  5z

2
 + 7z + 13 = 0 

(a) Factorise over the real numbers 

(b) Find all three real roots 

Solution:   

(a) 3  2i  is a root    3 + 2i  is also a root 

 (z  (3  2i))(z  (3 + 2i))  =  (z
2
  6z  + 13)  is a factor 

 z
3
  5z

2
 + 7z + 13 =  (z

2
  6z  + 13)(z + 1)  by inspection  

 (b)    roots are  z  =   3  2i,   3 + 2i   and   1   

 

 

Loci on an Argand Diagram 

Two basic ideas 

1. z – w  is the distance from  w  to  z . 

2. arg (z – (1 + i))  is the angle made by the line joining  (1+i)  to  z, with the  x-axis. 

Example  1: 

z – 2 – i = 3   is a circle with centre  (2 + i)  and radius 3 

 

Example  2: 

z  + 3 – i  =  z – 2 + i   

   z  – (–3 + i)  =  z – (2 – i)   

 is the locus of all points which are equidistant 

from the points   

A (– 3, 1)  and  B (2, –1), and so is the 

perpendicular bisector of  AB. 

 

−8

 

−6

 

−4

 

−2

 

2

 

4

 

6

 

8

 

−4

 

−3

 

−2

 

−1

 

1

 

2

 

3

 

4

x

y

A

B
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Example  3: 

arg (z  – 4)  = 
  

 
  is a half line, from (4, 0), making 

an angle of  
  

 
  with the  x-axis. 

 

Example  4: 

z – 3 =  2 z + 2i   is a circle  (Apollonius’s circle).  

To find its equation, put  z = x + iy 

   (x – 3) + iy  =  2x + i(y + 2)   square both sides 

    (x – 3)
2
 + y

2
   =  4(x

2
 + (y + 2)

2)   leading to 

    3x
2
 + 6x + 3y

2
 + 16y + 7  =  0 

     (x + 1)
2 

 +    
 

 
 

 

  =  
  

 
 

which is a circle with centre  (–1, 
  

 
 ), and radius  

    

 
  . 

 

Example 5: 

arg  
   

   
   

 

 
     

                       
 

 
 

      = 
 

 
 

which gives the arc of the circle as 

shown. 

 

N.B. 

The corresponding arc below the x-axis  

would have equation 

arg  
   

   
     

 

 
     

as    –   would be negative in this picture. 

 

−8

 

−6

 

−4

 

−2

 

2

 

4

 

6

 

8

 

−4

 

−2

 

2

 

4

x

y

 
   

 
 

– 5 2 

x 

y 

 
   

 
 

– 5 2 

y 

x 
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Transformations of the Complex Plane 

Always start from the  z-plane and transform to the  w-plane, z = x + iy  and  w = u + iv. 

Example 1: Find the image of the circle  z  5 = 3   

under the transformation      
 

   
  . 

Solution:  First  rearrange to find  z 

    
 

   
    z  2 = 

 

 
  z = 

 

 
   

 Second  substitute in equation of circle 

     
 

 
          

    

 
    

  1  3w = 3w   3 
 

 
         

     
 

 
      

which is the equation of the perpendicular bisector of the line joining  0  to  
 

 
, 

 the image is the line  u = 
 

 
 

Always consider the ‘modulus technique’ (above) first;  

if this does not work then use the u + iv method shown below. 

Example 2: Show that the image of the line  x + 4y = 4  under the transformation 

   
 

   
   is a circle, and find its centre and radius. 

Solution: First rearrange to find z      z = 
 

 
   

 The ‘modulus technique’ is not suitable here. 

z = x + iy      and  w = u + iv    

   z  =   
 

 
      

    

    
     

 

    
 

    

    
   

 x + iy   =   
    

     
     

Equating real and imaginary parts   x  =  
 

         and  y  =  
  

      

   x + 4y = 4    becomes   
 

           
  

       =  4 

 u
2
  u  +  v

2
 + 4v  =  0 

    
 

 
 

 

         
  

 
 

which is a circle with centre   
 

 
      and radius  

   

 
 . 

There are many more examples in the book, but these are the two important techniques. 



   FP2  NOV 2014  SDB 13 

Loci and geometry 

It is always important to think of diagrams. 

Example: z  lies on the circle  z  2i = 1.  

Find the greatest and least values of  arg z. 

Solution: Draw a picture! 

The greatest and least values of   arg z  

will occur at  B  and  A. 

Trigonometry tells us that 

 = 
 

 
 

and so greatest and least values of  

arg z  are  
  

 
   and   

 

 
 

 

 

  

1 1 
2 

  

A B 
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4 First Order Differential Equations 

Separating the variables, families of curves 

Example: Find the general solution of 

  

  
 

 

      
 ,    for  x > 0, 

and sketch the family of solution curves. 

Solution: 
  

  
 

 

      
      

 

 
         

 

      
         

 

 
  

 

   
       

 ln y   =   ln x    ln (x + 1)  +  ln A 

 y  =  
  

   
   

        

   
        

 

   
  

Thus for varying values of  A  and for  x > 0, we have 

 

 

 

 

 

 

 

 

Exact Equations 

In an exact the L.H.S. is an exact derivative  (really a preparation for Integrating Factors). 

Example: Solve   sin x  
  

  
   +  y cos x  = 3x

2
 

Solution: Notice that the L.H.S. is an exact derivative 

sin x  
  

  
   +  y cos x   =   

 

  
        

 
 

  
          =   3x

2
 

 y sin x  =   3x
2
  dx   =   x

3
  + c 

 y  =   
      

    
 

 

−4

 

−2

 

2

 

4

 

6

 

−2

 

2

 

4

x

y

A=1

A=2

A=3

A=−1

A=−3
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Integrating Factors 

  

  
  + Py  =  Q          where  P  and  Q  are functions of  x  only. 

 In this case, multiply both sides by an Integrating Factor,            . 

The L.H.S. will now be an exact derivative,  
 

  
    . 

Proceed as in the above example. 

Example: Solve    x
   

  
  + 2y  =  1 

Solution: First divide through by  x 

 
  

  
   +  

 

 
   

 

 
    now in the correct form 

Integrating Factor, I.F., is              =    
 

 
   

  =         =  x
2
 

 x
2   

  
  + 2xy  =  x   multiplying by  x2 

 
 

  
       =  x ,   check that it is an exact derivative 

 x
2
 y  =          

  

 
        

 y   =   
 

 
 

 

   

 

Using substitutions 

Example 1: Use the substitution   y = vx  (where  v  is a function of  x) to solve the equation 

 
  

  
  

        

        . 

Solution: y = vx       
  

  
  =  v  +  x 

  

  
 

 
  

  
  

       

       
     v  +  x 

  

  
  =  

              

          
   =   

      

    
 

and we can now separate the variables 

 x 
  

  
   =  

      

           
               

      =  
  

     

 
    

  
 
  

  
    

 

 
 

  
 

  
 + 

 

 
  dv   =   

 

 
      

 
 

 
       

  

 
   =  ln x  +  c 

But   v  =  
 

 
,    

 

 
  

 

 
    

  

      =  ln x  +  c 

 2x
2
 ln y  + y

2
 = 6x

2
 ln x  +  c x2

  c is new arbitrary constant 

and I would not like to find  y‼! 
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Example 2: Use the substitution    
 

 
  to solve the differential equation  

 
  

  
           . 

Solution:   
 

 
            

  

  
    

  

  
 
  

  
 

 
  

  
 
  

  
    

 

  
  +  

 

 
     

 
  

  
             

Integrating factor is  R =              =                  

      
  

  
                  

 
  

  
                 check that it is an exact derivative 

 z sin x  =  cos x  +  c 

 z  =  
      

    
    but     

 

 
   

    
    

      
 

 

Example 3: Use the substitution  z = x + y  to solve the differential equation 

 
  

  
          

Solution: z = x + y     
  

  
    

  

  
 

 
  

  
         

  
 

      
             separating the variables 

  
 

 
     

 

 
               1 + cos z  =  1 + 2 cos2  

 

 
   1 =  2 cos2  

 

 
  

 tan  
 

 
   =          

But   z = x + y          
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5 Second Order Differential Equations  

Linear with constant coefficients 

 
   

   
     

  

  
                where  a, b  and  c  are constants. 

 

(1) when  f(x) = 0 

First write down the Auxiliary Equation, A.E 

A.E.             

and solve to find the roots                 

(i) If              are both real numbers, and if      

then the Complimentary Function, C.F., is 

             , where A  and  B  are arbitrary constants of integration 

 

(ii) If              are both real numbers, and if      

then the Complimentary Function, C.F., is 

            , where A  and  B  are arbitrary constants of integration 

 

(iii) If              are both complex numbers, and if                

then the Complimentary Function, C.F.,  

                       ,    

where A  and       B  are arbitrary constants of integration 

Example 1: Solve   
   

        
  

  
        

Solution: A.E. is            

               

 m  = 1  or  3 

                 when f(x) = 0, the C.F. is the solution 

 

Example 2: Solve    
   

        
  

  
          

Solution: A.E. is              

 (m + 3)
2
 = 0 

 m  =  3  (and 3)    repeated root 

                 when f(x) = 0, the C.F. is the solution 
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Example 3: Solve    
   

        
  

  
           

Solution: A.E. is               

 (m + 2)
2
  (3i)

2 
 = 0 

 (m + 2 + 3i) (m + 2  3i) = 0 

 m  =  2  3i   or   2 + 3i 

                          when f(x) = 0, the C.F. is the solution 

 

(2) when f (x) ≠ 0,  Particular Integrals 

First proceed as in (1) to find the Complimentary Function, then use the rules below to 

find a Particular Integral, P.I. 

Second the General Solution, G.S. , is found by adding the C.F. and the P.I. 

 G.S.  =  C.F.  +  P.I. 

Note that it does not matter what P.I. you use, so you might as well find the easiest, 

which is what these rules do. 

 

(1) f (x) = e
kx

. 

 Try  y = Ae
kx

 

 unless   e
kx

  appears in the C.F., in which case try   y = Cxe
kx

  

 unless   xe
kx

  appears in the C.F., in which case try   y = Cx
2
e

kx
. 

 

(2)              or              

 Try                      

 unless  sin kx  or  cos kx  appear in the C.F., in which case 

 try                           

 

(3) f (x)  =  a polynomial of degree  n. 

 Try   f (x)  =             
          

               

 unless a number, on its own, appears in the C.F., in which case 

 try    f (x)  =               
          

                

 

(4) In general 

 to find a P.I., try something like  f (x), unless this appears in the C.F. (or if there is 

a problem), then try  something like  x f (x). 
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Example 1: Solve   
   

        
  

  
            

 

Solution: A.E.  is  m
2
 + 6m + 5 = 0 

 (m + 5)(m + 1) = 0  m = 5  or  1 

 C.F. is                 

 

For the P.I., try  y = Cx + D 

 
  

  
          

   

      

 

Substituting in the differential equation gives 

 0  +  6C  +  5(Cx + D)  = 2x 

 5C = 2         comparing coefficients of x 

   C  =  
 

 
  

and 6C  +  5D  =  0        comparing constant terms 

    D  =  
   

  
   

 P.I.  is     
 

 
     

  

  
  

 G.S.  is                  
 

 
     

  

  
   

 

 

Example 2: Solve    
   

        
  

  
             

 

Solution: A.E. is   is  m
2
 – 6m + 9 = 0 

 (m  3)
2
  =  0 

 m  =  3           repeated root 

 C.F. is               

 

In this case, both       and x     appear in the C.F.,  

so for a P.I. we try            

 
  

  
                    

and 
   

   
                                   

 

Substituting in the differential equation gives 

 

                                            + 9               

             

    
 

 
 

 P.I. is     
 

 
      

 G.S. is                  
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Example 3: Solve   
   

    –           

 given that  x = 0 and        when  t = 0. 

 

Solution: A.E. is   m
2
 – 1 = 0 

 m  =  ±1 

 C.F. is               

 

For the P.I. try                      

 

                         

and                            

 

Substituting in the differential equation gives 

 

                         (                   =  4 cos 2t 

 5C  =  0   comparing coefficients of  sin 2t 

and 5D  =  4   comparing coefficients of  cos 2t 

 C = 0   and      
  

 
 

 P.I. is      
  

 
      

 G.S. is                  
 

 
      

                 
 

 
      

 

x = 0 and  when  t = 0      0 =  A + B  
 

 
 

and        when  t = 0      1 =  A  B 

 A = 
 

 
    and   B  =  

 

 
 

 solution is     
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D.E.s of the form        

   
    

  

  
             

Substitute   x = e
u
 

 
  

  
  =  e

u
 = x  

and  
  

  
 

  

  
  

  

  
        

  

  
  

  

  
  result  I 

But       
   

   
        

    
    

  
  = 

    
    

  
    

  

  
    using the chain rule 

  =  
      

    

  
    

  

  
    using result I 

  =     
   

      
  

  
      

  

  
     product rule 

 
   

   
             

   
    

  

  
    since  

  

  
  =  x 

      

   
    

   

   
    

  

  
     using result I 

 

Thus we have        

       
   

       
  

  
    and    

  

  
    

  

  
 

 

substituting these in the original equation leads to a second order D.E. with constant 

coefficients. 

 

Example: Solve the differential equation        

         
  

  
           . 

 

Solution: Using the substitution  x = e
u
, and proceeding as above 

 

      

       
   

       
  

  
    and    

  

  
    

  

  
 

 
   

       
  

  
     

  

  
                 

 
   

         
  

  
                 

 A.E. is   m
2
 – 4m + 3 = 0 

 (m  3)(m 1)  =  0  m  =  3  or  1 

 C.F. is  y  =  Ae
3u

  +  Be
u 

 

 

For the P.I. try  y = Ce
2u 

 
  

  
             and   

   

   
          

                                 

 C = 2 

 G.S. is  y  =  Ae
3u

  +  Be
u 
 +  2e

2u
 

 

But  x = e
u
     G.S. is  y  =  Ax

3
  +  Bx

 
 +  2x

2
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6 Maclaurin and Taylor Series 

 

1) Maclaurin series 

                        
  

  
        

  

  
             

  

  
        

2) Taylor series 

                          
  

  
        

  

  
             

  

  
        

3) Taylor series – as a power series in  (x  a) 

 replacing  x  by  (x  a)   in 2)  we get 

                       
      

  
       

      

  
            

      

  
        

4) Solving differential equations using Taylor series 

(a) If  we are given the value of  y  when  x = 0, then we use the Maclaurin series with 

             the value of  y  when  x = 0 

         
  

  
 

 
   the value of  

  

  
  when  x = 0 

etc. to give    

                  
  

  
 

 
    

  

  
 

   

    
 

  
  

  
 

   

    
 

    
  

  
 

   

    
 

   

(b) If  we are given the value of  y  when  x = a, then we use the Taylor power series 

with 

             the value of  y  when  x = a 

         
  

  
 

 
   the value of  

  

  
  when  x = a 

etc. to give    

                
  

  
 

 
    

      

  
 

   

    
 

  
      

  
 

   

    
 

   

 

NOTE  THAT  4 (a) and 4 (b) are not in the formula book, but can easily be found 

using the results in 1) and 3). 
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Standard series 

       
  

  
  

  

  
       

  

  
      converges for all real  x 

        
  

  
  

  

  
                 

       
     converges for all real  x 

 

        
  

  
  

  

  
                 

       
     converges for all real  x 

           
  

 
  

  

 
              

 
     converges for  1 < x ≤ 1 

            
      

  
      

              

  
     converges for  1 < x < 1 

 

Example 1: Find the Maclaurin series for           , up to and including the term in x
3 

Solution:                        

                          

                                 

                                        

and                        
  

  
        

  

  
             

  

  
         

                     
  

  
     

  

  
     up to the term in x3 

              
  

 
 

 

Example 2: Using the Maclaurin series for  e
x
  to find an expansion  of       

, up to and 

including the term in  x
3
. 

Solution:        
  

  
 

  

  
    

      
            

      
 

  
 

      
 

  
  up to the term in x3 

            
        

  
 

    

  
   up to the term in x3 

      
       

 

 
    

 

 
     up to the term in x3 
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Example 3: Find a Taylor series for        
 

 
 , up to and including the term in  x

2
. 

Solution:            and we are looking for 

     
 

 
   =   

 

 
       

 

 
   

 

  

 
    

 

 
  

                  
 

 
    

                         
 

 
     

                             
 

 
    

       
 

 
           

 

  

 
    up to the term in x2 

       
 

 
           2x

2  
up to the term in x2 

 

Example 4: Use a Taylor series to solve the differential equation,  

  
   

       
  

  
 

 

       equation  I 

up to and including the term in  x
3
, given that  y = 1  and  

  

  
    when  x = 0. 

In this case we shall use    

                        
  

  
        

  

  
             

  

  
        

             
  

  
 

 
    

  

  
 

   

    
 

  
  

  
 

   

    
 
. 

We already know that  y0 = 1  and   
  

  
 

 
      values when x = 0 

  
   

    
 

    
 

 
 

  

  
 

 

    
 
  =  5      values when x = 0 

Differentiating     
   

       
  

  
 

 

    = 0 

  
   

      
  

  
 

   

        
  

  
 

   

     
  

  
       

Substituting  y0 = 1,   
  

  
 

 
    and   

   

   
 

 
 =  5  values when x = 0 

  
   

   
 

 
                             

  
   

    
 

    

 solution is             
  

  
        

  

  
      

         
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Series expansions of compound functions 

Example: Find a polynomial expansion for 

  
     

    
 , up to and including the term in  x

3
. 

Solution: Using the standard series 

 cos 2x  =    
     

  
       up to and including the term in  x3 

and                   
     

  
       

        

  
        

   =                up to and including the term in  x3 

 
     

    
  =    

     

  
                 

  =                       up to and including the term in  x3 

 
     

    
  =                 up to and including the term in  x3 
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7 Polar Coordinates 

The polar coordinates of  P  are  (r,  ) 

r = OP,  the distance from the origin or pole,  

and    is the angle made anti-clockwise  with the 

initial line. 

In the Edexcel syllabus r is always taken as positive 

(But in most books  r  can be negative, thus      
 

 
   is the same point as     

  

 
  )   

Polar and Cartesian coordinates 

From the diagram   

r =            

and        
 

 
   (use sketch to find   ). 

x  =  r cos    and  y  =  r sin  . 

Sketching curves 

In practice, if you are asked to sketch a curve, it will probably be best to plot a few points. The 

important values of   are those for which  r = 0.  

The sketches in these notes will show when r is negative by plotting a dotted line; these sections 

should be ignored as far as Edexcel A-level is concerned. 

Some common curves 

          

 Cardiod Limacon without dimple Limacon with a dimple 

 a = b a  2b,         b  a < 2b  
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 r = 3+1.4cos θ

 

−6

 

−4

 

−2

 

2

 

4

 

6

 

−4

 

−3

 

−2

 

−1

 

1

 

2

 

3

 

4

x

y

 r = 3+2 cos θ

y 

x 

P (x, y ) 

r 

 

x 

y 

 initial line 
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r 

   O 

pole 
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 Limacon with a loop Circle Line  

 a < b 
 r negative in the loop  r negative in bottom half 

     

 Line Line Circle 

    

 

Rose  Curves 

 r = 4 cos 3  r = 4 cos 3 

 0          2   

      

 below x-axis, r negative above x-axis, r negative 
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r = 3 cos 4 

 

Thus the rose curve r = a cos   always has n petals, when only the positive values of r are 

taken. 

 

Leminiscate  of  Bernoulli         Spiral   r = 2        Spiral  r = e
  

  

 

 

Circle  r = 10 cos  

Notice that in the circle on  OA  as diameter, the 

angle  P  is 90
o
 (angle in a semi-circle) and 

trigonometry gives us that  r = 10 cos  . 
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Circle  r = 10 sin   

In the same way  r = 10 sin   gives a circle on the  y-axis. 

 

 

 

 

 

Areas using polar coordinates 

Remember:   area of a sector is  
 

 
    

 

Area of  OPQ  =  A    
 

 
     

 Area  OAB     
 

 
      

as     0 

  Area  OAB  =    
 

 
     

  

  
 

 

Example: Find the area between the 

curve  r = 1 + tan    

and the half lines    = 0  and    
 

 
 

Solution: Area  =    
 

 
     

 
  

 
 

=     
 
          

 
  

 
    

=     
 
                  

 
  

 
    

=     
 
                

 
  

 
    

= 
 

 
                

 

 
   

= ln 2  + 
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Tangents parallel and perpendicular to the initial line 

           and           

   
  

  
     

  
  

 

  
   

      

1) Tangents will be parallel to the initial line ( = 0), or horizontal, when  
  

  
   

 
  

  
   

 
  

  
             

2) Tangents will be perpendicular to the initial line ( = 0), or vertical, when 
  

  
  is infinite 

 
  

  
   

 
  

  
             

 

Note that if both  
  

  
     and   

  

  
  , then  

  

  
  is not defined, and you should look at a sketch 

to help  (or use  l'Hôpital's rule). 
 

Example: Find the coordinates of the points on            where the tangents are 

(a) parallel to the initial line, 

(b) perpendicular to the initial line. 

 

Solution:           is shown in the diagram. 

 

(a) Tangents parallel to   = 0  (horizontal) 

      
  

  
          

  

  
             

     
  

  
                        

  

  
                   

                      =  0                     =  0 

                             
 

 
              

    
 

 
          

(b) Tangents perpendicular to   = 0  (vertical) 

      
  

  
          

  

  
             

     
  

  
                        

  

  
                

                    =  0                     =  0 

        
 

 
                  

    
  

 
         , π 

http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule
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From the above we can see that 

(a) the tangent is parallel to    = 0 

at  B     
 

 
 , and  E     

 

 
 , 

also at      , the origin – see below 

 

(b) the tangent is perpendicular to    = 0 

at  A (  = 0),  C     
  

 
   and  D     

   

 
  

 

(c) we also have both  
  

  
    and   

  

  
    when      !!! 

From the graph it looks as if the tangent is parallel to    = 0  at the origin,        , 

and from l'Hôpital's rule it can be shown that this is true. 
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