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1 Complex Numbers

Definitions and arithmetical operations

i=+v—1, so V=16 = 4i, V=11 = V111, etc.

These are called imaginary numbers

Complex numbers are written as z=a + bi, where a and b € R.
aisthe real partand b is the imaginary part.

+, —, x are defined in the “sensible’ way; division is more complicated.

(@a+bi) + (c+di) (@+c) + (b+dji

(@+bi) = (c+di) = (@-c) + (b-d)i
(@+hi) x (c+di) = ac + bdi? +adi + bci
= (ac—bd) + (ad +bc)i since i2=-1
So (3+4i) — (7-3i) = —4+Ti
and (4 +3i)(2-5i) = 23-14i

Division — this is just rationalising the denominator.

34+4i __ 3+4i 5-2i . .
S12i 547 X T o multiply top and bottom by the complex conjugate

23+14i 23 | 14,
= = —+ 1
25+4 29 29

Complex conjugate

z=a+bi
The complex conjugate of zis z* =2z = a - bi

Properties

Ifz=a+bi and w=c +di, then
(i) {(a+bi)+(c+di)}* = {(a+c)+(b+d)i}*
= {(@a+c)- (b +d)i}

= (a—bi) + (c - di)

& (Z+w)* =z +w*
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(i) {(a+bi)(c+di)}* = {(ac - bd) + (ad + bc)i}*

{(ac - bd) - (ad + bc)i}
= (a-bi) (c - di)
= (a+ bi)*(c + diy*

S (zw)* = 72w

Complex number plane, or Argand diagram

We can represent complex numbers as points on the complex number plane:

3+ 2i asthe point A (3, 2), and —4 + 3i as the point (-4, 3).

4 1 Imaginary
B: (-4, 3) -
27 =A:(3,2)
Real
+ D + >
-5 5 10
_2 T

Complex numbers and vectors

Complex numbers under addition (or subtraction) behave just like vectors under addition (or
subtraction). We can show complex numbers on the Argand diagram as either points or

vectors.

@+bi)+(c+di) = (@a+c)+(b+d)i < (Z)+(C) =

@+by-(c+d) = @-0+b-di o (5)-(5) =(F29)

or

V&)

21— 1

Z;

v

Re

v

Re
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Multiplication by i

iI(3+4i) = -4+ 3i — onan Argand diagram this would have the effect of a positive quarter

turn about the origin.
Im

In general,

i(a+bi) = b +ai

(a, b)

Modulus of a complex number

This is just like polar co-ordinates.
The modulus of z is |z| and

is the length of the complex number

Re

z=a+hi

|z| = VaZ+ b2

zz* = (a+bi)(a—bi) = a®+b?

= z7* = |z]2

Argument of a complex number

Re

The argument of z is argz = the angle made by the complex number with the positive

X-axis.
By convention, —r<argz< .

N.B. Always draw a diagram when finding arg z.

Example: Find the modulus and argument of z =-6 + 5i.

Solution:  First sketch a diagram (it is easy to get the argument wrong if you don’t).

—-6,5 |
2] = v6Z+52 = V&l ( )|| m
VA
and tan a=§ —  =0-694738276 5
a \0 —
= argz =0 = 7—a =245 t03S.F 6 Re
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Equality of complex numbers

a+bi = c+di =N
= (a-c) = (d=h)’i? = —(d=h)?
But (a—c)* >0 and —(d-h)*> <0
= (a-c)¥ = —d-=-b? =0

= a=cand b=d

Thus a+bi = c+di

a-c = (d-b)i

squaring both sides

= real parts are equal (a =c), and imaginary parts are equal (b =d).

Square roots

Example: Find the square roots of 5 + 12i, inthe form a+bi, a,b € R.
Solution: Let +/5+ 12i = a+ bi

—  5+12i = (a+hi)®> = a?=b® + 2abi

Equating real parts =  a’-b* =5, I

equating imaginary parts = 2ab =12 = a-= %

Substitute in 1 = (g)z — b*=5

=  36-b" =5b° =  b*'+5b*°-36 =

= (B°-4(b°+9=0 = bp*=4

= b=x2, and a =£3

=  V5+12i = 3+2i or -3-2i.

Roots of equations

(@) Any polynomial equation with complex coefficients has a complex solution.

The is The Fundamental Theorem of Algebra, and is too difficult to prove at this stage.

Corollary: Any complex polynomial can be factorised into linear factors over the

complex numbers.
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(b) If z=a+biisarootof anz"+ on1z" "+ anoZ™+ ...+ @22’ + a1 + ag =0,
and if all the «; are real,
then the conjugate, z* =a - Dbi is also a root.

The proof of this result is in the appendix.

(c) For any polynomial with zeros a + bi, a- bi,
(z-(a+bi))(z - (a—bi)) = z2-2az +a®-b® will be a quadratic factor in which the
coefficients are all real.

(d) Using (a), (b), (c) we can see that any polynomial with real coefficients can be factorised
into a mixture of linear and quadratic factors, all of which have real coefficients.

Example:

Solution:

=
=

=

Show that 3 —2i is a root of the equation z* — 8z% + 25z — 26 = 0.
Find the other two roots.

Putz=3-2i in 22— 87° + 252 - 26
(3-2i)°-8(3-2i)* + 25(3-2i) - 26
27 —54i +36i > — 8i® —8(9—12i + 4i ?) + 75 -50i - 26
27-54i —-36 + 8i — 72+ 96i +32 + 75-50i-26

27-36-72+32+75-26+ (-54 + 8 + 96 — 50)i

0+ 0i

3-2i isaroot

the conjugate, 3 + 2i, is also a root since all coefficients are real

(z-(3+2i))(z-(8-2i) = 22-62+13 isa factor.

Factorising, by inspection,

=
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2  Numerical solutions of equations

Accuracy of solution

When asked to show that a solution is accurate to n D.p., you must look at the value of f (x)
‘half’ below and ‘half’ above, and conclude that

there is a change of sign in the interval, and the function is continuous, therefore there
is a solution in the interval correct to n D.P.

Example: Show that & = 2-0946 is a root of the equation
f(x) = x> = 2x—5 =0, accurate to 4 D.P.

Solution:
f (2.09455) = -0-0000165..., and f(2.09465) = +0-00997
There is a change of sign and f is continuous

= there is a root in [2-09455, 2-09465] = rootis «a=2-0946 to 4 D.P.

Interval bisection

(1) Find an interval [a, b] which contains the root of an equation f (x) = 0.

(i) x= %b is the mid-point of the interval [a, b]

Find f(%b) to decide whether the root lies in [a,%b] or [a:—b,b] :

(iii) Continue finding the mid-point of each subsequent interval to narrow the interval which
contains the root.

Example: (i) Show that there is a root of the equation
f(x) = x> = 2x—7 =0 in the interval [2, 3].
(i) Find an interval of width 0-25 which contains the root.

Solution: (i) f(2)=8-4-7=-3, and f(3)=27-6-7=14
There is a change of sign and f is continuous = there isaroot in [2, 3].
(i) Mid-point of [2, 3] is x=2-5,and f(2:5) =15-625-5-7 = 3.625
= change of sign between x=2and x=2-5

= root in [2, 2-5]
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Mid-point of [2, 2-5] is x =2.25,
and f(2-25) = 11-390625 — 4-5 - 7 = -0-109375

= change of sign between x =2-25and x =25

= root in [2-25, 2-5], which is an interval of width 0-25

Linear interpolation

To solve an equation f (x) using linear interpolation.

First, find an interval which contains a root,

second, assume that the curve is a straight line and use similar triangles to find where the line

crosses the x-axis,

third, repeat the process as often as necessary.

Example: (i) Show that there is a root, «, of the equation
f(x) =x3=2x -9 =0 in the interval [2, 3].
(i) Use linear interpolation once to find an approximate value of .

Give your answer to 3 D.P.

Solution: (i) f(2)=8-4-9 =-5, and f(3)=27-6-9=12

There is a change of sign and f is continuous = there isaroot in [2, 3].

(i) From (i), curve passes through (2, -5) and (3, 12), and we assume that the curve

is a straight line between these two points.
Let the line cross the x-axis at (¢, 0)

Using similar triangles

3—e _ 12 (3,12)
a—2 - 5 :
=  15-5¢=12a-24 112
= azﬁ: 2i 2 4-2 i

17 17 5 , " >

! 3-a 3
=  a= 229 to3D.P 5
(2,-5)

Repeating the process will improve accuracy.
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Newton-Raphson

Suppose that the equation f (x) =0 has a root at
x=a = f(a)=0

To find an approximation for this root, we first find
avalue x=a nearto x = « (decimal search).

In general, the point where the tangent at P, x = a,
meets the x-axis, x = b, will give a better
approximation.

At P, x = a, the gradient of the tangent is f’'(a),
and the gradient of the tangent is also %.

PM=y=f(a) and NM=a-b

a — PM _ f(@ _ . f@
:>f(a)—NM—a_b = b=a T

Further approximations can be found by repeating the process, which would follow the dotted
line converging to the point (¢, 0).

f(xn)
f'(xn)

This formula can be written as the iteration Xn+1 = Xp —

Example: (i) Show that there is a root, «, of the equation
f(x) = x> = 2x—5 =0 in the interval [2, 3].

(i) Starting with xo = 2, use the Newton-Raphson formula to
find x5, X2 and Xxs, giving your answers to 3 D.p. where appropriate.

Solution: (i) f(2)=8-4-5=-1, and f(3)=27-6-5=16
There is a change of sign and f is continuous = there is aroot in [2, 3].
(i) f)=x*-2x-5 = f/x)=3x"-2

f(xo) _ 8-4-5

= X1 = Xo—f,(xo) = - 122 =21
= Xo = 2-:094568121 = 2-095
= X3 = 2-094551482 = 2.095
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3  Coordinate systems

Parabolas

y* = 4ax is the equation of a parabola which passes M
through the origin and has the x-axis as an axis of

symmetry.

Parametric form

x=at’, y=2at satisfy the equation for all values of t.
t is a parameter, and these equations are the parametric
equations of the parabola y* = 4ax.

Focus and directrix

P (at2 2at)

directrix
x=-a

The point S (a, 0) is the focus, and

the line x =—a is the directrix.

Any point P of the curve is equidistant from the focus and the directrix, PM = PS.

Proof:

PS 2

= PM = PS.

Gradient

PM = at’-(-a) = at’+a
(at? —a)? + (2at)® = a’t'—2a’t* + a® +4a’t’

at*+2a%’ +a’ = (at’+a)’ = PM?

For the parabola y? = 4ax, with general point P, (at?, 2at), we can find the gradient in two

ways:
1. y?=4ax
dy _
= ZyE = 4a =
2. AtP, x=at? y=2at

a dx
= Z=23, = =2at
dt dt
d
ay _ Vg _ 20 _
= ax ax/ ..~ 2at
dt

FP1 JUNE 2016 SDB
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Tangents and normals

Example: Find the equations of the tangents to y* = 8x at the points where x = 18, and
show that the tangents meet on the x-axis.

Solution: x=18 = y*=8x18 = y==+12

2y3—i28 = Z—z: i§ since y =+12
—  tangentsare y-12= § (x-18) =  x-3y+18=0 at (18, 12)
and y+12:—§(x—18) =  x+3y+18=0. at (18, -12)

To find the intersection, add the equations to give
2x+36=0 = x=-18 = y=0

= tangents meet at (=18, 0) on the x-axis.

Example:  Find the equation of the normal to the parabola given by x = 3t%, y = 6t.

Solution: x=3t% y=6t= £ =gt Z=g,
dt dt
dy _ dy/dt _ 6 1
= dr  ax = = -
dx at 6t t

-1

= gradient of the normal is = —

1
t

—  equation of the normal is y -6t = —t(x — 3t%).

Notice that this ‘general equation’ gives the equation of the normal for any particular
value of t:— when t=-3 the normal isy + 18 = 3(x - 27) < y =3x-99.

Rectangular hyperbolas

A rectangular hyperbola is a hyperbola in which the
asymptotes meet at 90°.

xy = c? is the equation of a rectangular hyperbola in
which the x-axis and y-axis are perpendicular
asymptotes.
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Parametric form

X=ct, y= % are parametric equations of the hyperbola xy = c?.

Tangents and normals

Example:
X=3.

Solution:

Example:

Solution:

Find the equation of the tangent to the hyperbola xy =36 at the point where

X=3 = 3y=36 = y=12
y:3x—6 = 2—1:—%:—4 when x =3

tangent is y—-12=-4(x-23) = 4x+y-24=0.

Find the equation of the normal to the hyperbola given by x=3t, y = %

3 d dy _ -3

X=3t,y:— jt —x=3, _y:_
t dt dt t2

-3
ay _ Y/ z -1
dax 9%/, 3 t2
R . -1
gradient of the normal is —— =

7

equation of the normal is y —% t3(x — 3t)

tx—ty = 3t*- 3.
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4 Matrices

You must be able to add, subtract and multiply matrices.

Order of a matrix

An r x ¢ matrix has r rows and ¢ columns;
the fiRst number is the number of Rows
the seCond number is the number of Columns.

Identity matrix

The identity matrix is | = ((1) (1))

Note that MI = IM = M for any matrix M.

Determinant and inverse

LetM:(‘C’ Z

DetM=|M| = ad-bc.

)then the determinant of M is

To find the inverse of M = (Ccl Z)

Note that M™M= MM =1

() Find the determinant, ad — bc.
If ad-bc =0, there is no inverse.

(i) Interchange a and d (the leading diagonal)
Change sign of b and c, (the other diagonal)
Divide all elements by the determinant, ad — bc.

= M1 = adibc(d _b),

—C a
Check
s ww(L D@ )= w0 )= Y-

Similarly we could show that MM ™ =1.
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Example: M = (g g) and MN = (_21 i) Find N.

Solution:  Notice that M ™ (MN) = (M *M)N =IN =N multiplying on the left by M
But MNM % IN we cannot multiply on the right by M
First find M ™

1 —
DetM = 4x3-2x5=2 = M1 = 5(3 2)

Using M (MN)=IN =N
= N= %(—35 _42)(_21 i): %(I?? —46)=(_63-.55 —23)

Singular and non-singular matrices

If det A=0,then A is asingular matrix, and A™ does not exist.

If det A=0,then A isa non-singular matrix, and A™ exists

Linear Transformations

A matrix can represent a transformation, but the point must be written as a column vector
before multiplying by the matrix.

Example: The image of (2, 3) under T = (11L ;) is given by (11L ;) (g) = (283)

= the image of (2, 3) is (23, 8).
Note that the image of (0, 0) is always (0, 0)
& the origin never moves under a matrix (linear) transformation
Basis vectors

The vectors | = ((1)) and | = ((1)) are called basis vectors, and are particularly important in

describing the geometrical effect of a matrix, and in finding the matrix for a particular
geometric transformation.

(¢ D= = ¢ Q=)

i= ((1)) - (Z) the first column,and | = (0) — (b) the second column

This is a more important result than it seems!
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Finding the geometric effect of a matrix transformation

We can easily write down the images of i and |, sketch them and find the geometrical

transformation.

Example: Find the transformation represented by the matrix T = (S g)
Solution: Find images of i,] and (1 dsh
: g I,j and (), andshowona sty
sketch. Make sure that you letter the points ¢ &

N

G261 D=6 33

From sketch we can see that the transformation is a

two-way stretch, of factor 2 parallel to the x-axis
and of factor 3 parallel to the y-axis.

Finding the matrix of a given transformation.

Example: Find the matrix for a shear with factor 2 and invariant line the x-axis.

Solution: Each point is moved in the x-direction by a
distance of (2 x its y-coordinate).

0
is on the invariant line). c B

This will be the first column of the T

matrix ((1) :)

i= (1) — ((1)) (does not move as it ‘ y

| IS N
A

.....

s
-
>
e
-

>
>

i= ((1)) — (i) This will be the second

column of the matrix (: i)

= Matrix of the shear is ((1) i)

Example: Find the matrix for a reflection iny = —x.

Solution:  First find the images of i and |. These will be

the two columns of the matrix.

won = 1= (%)

This will be the first column of the matrix (

5

16
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0w = i=(0) > (3)

This will be the second column of the matrix (: _1)

= Matrix of the reflection is (_01 _01)

Rotation matrix

From the diagram we can see that

ya
. _ 1 cos 6 , : B(0,1)
=) = (o) L |
(-sing, coso) A’(cosd, sind)
. _ (0 —sin @ cosé
1= (1) - ( cos @ ) 9 gsinH
0
These will be the first and second 3
. cosd A (1, 0)
columns of the matrix '
. _ (cos8 —sinf
= matrix 1S Rg = (sine cos 0 )
Determinant and area factor
. _(a b
For the matrix A = (C d) y b A
a b\(1\_(a
@ D= :
a byoy_(m | |
and (c d) (1) B (d) (b, d) @ c): -------
= the unit square is mapped on to the di —1 C
parallelogram as shown in the diagram. L | |
1 : .
a b i

The area of the unit square = 1.

The area of the parallelogram = (a + b)(c + d) — 2 x (bc + % ac + % bd)

= ac + ad + bc + bd — 2bc —ac - bd

= ad —bc = detA.

All squares of the grid are mapped onto congruent parallelograms

— area factor of the transformation is det A =ad - bc.

FP1 JUNE 2016 SDB
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5 Series

You need to know the following sums

n

1
ZT=1+2+3+'“+TL = En(n+1)

=<
MB 1l
=

1

<
1l

NgE

=<
1l
=

Example:

Solution:

Example:

Solution:

Example:

Solution:

18

r2=12+22+3%+-+n?

%n(n +1)(2n+1)

1
r3=134+234334+.4n3 = an(n+1)2
n 2
—(En(n+1)) = (Z r)
r=1
n
Find Zr(rz ~3).
r=1
n n n
Zr(rz—S) = Zr3— 327"
r=1 r=1 r=1

%nz(n +1)2 — 3X% %n(n +1)
%n(n + 1){n(n+1) — 6}

%n(n + 1D +3)(n—-2)

Find S,= 2°+4%+6%°+ ... + (2n)%

a fluke, but it helps to remember it

Sp= 22 +4%+ 6%+ ... +(2n)? = 22(1%+2°+ 3+ ... +nd)

4xzn(n+1(2n+1) = Zn(n+1)2n+1).

Find Zrz
r=5
n+2 n+2 4
r? = r? — Zrz
r=5 r=1 r=1

%(n+2)(n+2+1)(2(n+2)+1)—% X4%X5x9

=(n+2)(n+3)(2n +5) - 30.

notice that the top limit is 4 not 5
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6 Proofby induction

1. Show that the result/formula is true for n=1 (and sometimesn=2,3..).
Conclude
“therefore the result/formula .......... is true for n=1".

2. Make induction assumption

“Assume that the result/formula .......... is true for n =k”.
Show that the result/formula must then be true for n=k + 1
Conclude

“therefore the result/formula .......... istrue for n=k+1”.

3. Final conclusion
“therefore the result/formula ............ is true for all positive integers, n, by
mathematical induction”.

Summation

Example: Use mathematical induction to prove that
$i=12+22+ 3+ ..+’ = Zn(n+1)@2n+1)
Solution: Whenn=1, $;=1°=1 and Slzﬁx 11+1D@2x14+1) = %x1x2x3 =1
= Sn= %n(n + 1)(2n+ 1) istrue for n=1.
Assume that the formula is true for n =k
= S =1P+22+3%+ L+ = Sk(k+ D2k +1)
= Sie1 = P22+ 3+ 4K+ (k1) = Sk(k+ D2k +1) + (k+1)°
= =(k + D{k(k + 1) + 6(k + 1)}
= %(k + D{2k? + 7k + 6} = %(k + 1)(k + 2)(2k + 3)
= <(k+ D{(k+ 1) + 12k + 1) + 1}
= The formulais true for n=k+1

= Sp= %n(n + 1)(2n + 1) s true for all positive integers, n, by mathematical
induction.
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Recurrence relations

Example: A sequence, 4, 9, 19, 39, ... is defined by the recurrence relation

Uy =4, Uy+q=2U,+ 1. Provethat uy=5x2""*-1.

Solution: When n=1,u;=4, and u;=5x2"1-1=5-1=4, = formulatrue forn=1.

Assume that the formula is true for n=k, = ux=5x k=1_1,
From the recurrence relation,

2u+1 =26x28"1-1)+1

Uk +1

= Ug+q 5x2¢-2 +1= 5x2KD-1_1
= the formula is true for n=k+1

= the formula is true for all positive integers, n, by mathematical induction.

Divisibility problems

Considering f (k + 1) — f (k), will lead to a proof which sometimes has hidden difficulties,

and a more reliable way is to consider f(k+1) — m x f (k), where m is chosen to eliminate
the exponential term.

Example: Prove that f(n) = 5"—4n -1 is divisible by 16 for all positive integers, n.

Solution: When n=1, f(1) = 5'—4—1=0, which is divisible by 16, and so f (n) is

20

divisible by 16 when n=1.
Assume that the result is true for n=k, = f(k) = 54k — 1 is divisible by 16.
Considering f(k+ 1) — 5xf (k) we will eliminate the 5¢ term.
f(k+1) - 5xf(k) = B"'-4k+1)-1)-5x(B“-4k-1)
= 5*1_4k-4-1 - 51+ 20k +5 = 16k
= f(k+1) = 5xf(k) +16k

Since f (K) is divisible by 16 (induction assumption), and 16k is divisible by 16, then
f (k + 1) must be divisible by 16,

= f(n) = 5" —4n - 1isdivisible by 16 for n=k + 1

= f(n) = 5" —4n - 1is divisible by 16 for all positive integers, n, by mathematical
induction.
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Example: Provethat f(n) = 2°"*3 + 3*"~! isdivisible by 5 for all positive integers n.

Solution: When n=1, f(1) = 2°"3+ 3°71 = 32+3 = 35 = 5x 7, and so the result is
true for n=1.

Assume that the result is true for n =k
= f(k) = 2%*3+ 3*~1 isdivisible by 5
We could consider either (it does not matter which)
f(k+1) — 22xf(k), whichwould eliminate the 2**2 term I
or f(k+1) — 3°xf(k), whichwould eliminate the 3*~* term I
| = fk+1) - 22><f(k) = Q2k+1+3 4 2(k+1)-1 _22X(22k+3 + 32k—1)
— 22k+5+32k+1 _ 22k+5 _ 22X32k—1
= fk+1) — 4xf(K) = 9x3%1_gx3% 1= p5x3X?
= f(k+1) = 4xf(k) - 5x3*?

Since f (k) is divisible by 5 (induction assumption), and 5 x 3% ~*

then f (k + 1) must be divisible by 5.

is divisible by 5,

= f(n) = 2"*%+ 3! jsdivisible by 5 for all positive integers, n, by
mathematical induction.

Powers of matrices

2
0

27’1

Example: If M = ( 0

— —on
11), prove that M" = ( 1 12 ) for all positive integers n.

Solution: When n=1, M! = (201 1_121) = (S _11) =M

= the formula is true for n = 1.

k __ 9k
Assume the formula is true for n=k = Mk = (2 1 12 )

0

Mk+1=MMk=(2 —1)(2k 1—2’<) =(2><2’< 2—2><2'<—1>
0 1/\0 1 0 1

2k+1 1— 2k+1
0 1

2" 1 -2"

0 1

induction.

= MK+ = ( ) = The formulaistrue for n=k+1

= M" = ( ) is true for all positive integers, n, by mathematical
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7  Appendix

Complex roots of a real polynomial equation

Preliminary results:
I (Za+zo+z3+2z4+ ... +2p)* = 217*+2* + 23 + 747 + ..+ 2%,
by repeated application of (z + w)* = z* + w*
I @) = @"
(zw)* = 2*w*

= @) =% = @@ =D =IO =)

Theorem: Ifz=a+bi isarootof onz"+ a1z + ano2™2+ ...+ ar2%+ a1Z + ag =0,
and if all the «; are real,
then the conjugate, z* =a - bi is also a root.

Proof: If z=a+bi isaroot of the equation anz"+ anaz™  + ... + @12 + g =0

then onZ"+ an 12"+ ...+ a2+ a1Z + ao =0

= (anzn+an_1zn_l+...+a222+a12+a0)*:O since 0* = 0
= (a2 + (a "N+ .+ (@229  + (212)* + (a0)* =0 using |
= an*(2")* + an* @+ o+ @ (20)* + ar*(2)* + ao*=0  since (zw)* = *w*
= (N F o@D+ L+ ao( D)+ ay(2)* +a=0 areal = a*=a
= ()" + o (@) + L+ a7+ ai(ZF) + ap=0 using 11

= z* =a-bi isalso aroot of the equation.

Formal definition of a linear transformation

A linear transformation T has the following properties:

0 () -s()

@ 1(GD+G) TG +1 ()

It can be shown that any matrix transformation is a linear transformation, and that any linear
transformation can be represented by a matrix.
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Derivative of x”, for any integer

We can use proof by induction to show that j—x (x™) = nx™1, for any integer n.

1)

2)

3)

We know that the derivative of x° is 0 which equals 0x?,
since x° =1, and the derivative of 1 is0
= %(x") = nx""1 istrue for n=0.

We know that the derivative of x* is 1 which equals 1 x x*~*
= %(x") = nx™ 1 istruefor n=1

Assume that the result is true for n =k

d

d .k — k-1

= — (x") kx

= L) = Lexak) =xx (6 + 1 x xk product rule
dx dx dx

= %(xk“) = x X kx®"1 + xk = kx* + x* = (k + D)x*

d 1 -
= a(x") = nx" ! istruefor n=k+1

= %(x") = nx™"1 is true for all positive integers, n, by mathematical induction.

We know that the derivative of x* is —x which equals —1 x x*~*

d 1 -
= — (™) = nx" 1 s true for n=-1

Assume that the result is true for n =k

a .k _ k-1
ey Tx (x ) = kx
.k k
d _ d k xx—(x") — xfx1 )
= — (kY = —(x—) i) quotient rule
dx dx \ x x2
4 ok+1y xxkak=1 — xk (k-1)xk _ k=2 _ _ (k=1)—-1
= — (") = " === (k—1Dx"**= (k—1x
d 1
= — (™) = nx" Listruefor n=k-1

We are going backwards (from n=k to n =k - 1), and, since we started from n=-1,
= %(x") = nx""1 is true for all negative integers, n, by mathematical induction.
Putting 1), 2) and 3), we have proved that

d _ .
— (™) = nx" 1 for any integer n.
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8 Index

Complex numbers
Argand diagram, 4
argument, 5

arithmetical operations, 3

complex conjugate, 3

complex number plane, 4

definitions, 3

equality, 6

modulus, 5
multiplication by i, 5
polynomial equations, 6

similarity with vectors, 4

square roots, 6

Complex roots of a real polynomial equation, 22
Derivative of X", for any integer, 23

Determinant
area factor, 17
Linear transformation
formal definition, 22
Matrices
determinant, 14
identity matrix, 14
inverse matrix, 14
non-singular, 15
order, 14
singular, 15
Matrix transformations
area factor, 17
basis vectors, 15
finding matrix for, 16
geometric effect, 16
rotation matrix, 17

24

Numerical solutions of equations

accuracy of solution, 8
interval bisection, 8
linear interpolation, 9

Newton Raphson method, 10

Parabolas
directrix, 11
focus, 11

gradient - parametric form, 11

normal - parametric form, 12

parametric form, 11

tangent - parametric form, 12

Proof by induction

divisibility problems, 20

general principles, 19
powers of matrices, 21
recurrence relations, 20
summation, 19
Rectangular hyperbolas

gradient - parametric form, 13

parametric form, 13

tangent - parametric form, 13

Series

standard summation formulae, 18

Transformations
area factor, 17
basis vectors, 15
finding matrix for, 16
geometric effect, 16

linear transformations, 15

matrices, 16
rotation matrix, 17
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1 Inequalities

Algebraic solutions

Remember that if you multiply both sides of an inequality by a negative number, you must turn
the inequality sign round: 2x > 3 = -2x < -3.

A difficulty occurs when multiplying both sides by, for example, (x — 2); this expression is
sometimes positive (x > 2), sometimes negative (x < 2) and sometimes zero (x = 2). In this case
we multiply both sides by (x — 2)?, which is always positive (provided that x # 2).

2

Example 1:  Solve the inequality 2x + 3 < % X # 2
Solution: Multiply both sides by (x — 2)? we can do this since (x — 2) # 0
= 2x+3)(x—2)?2 <x*(x—2) DO NOT MULTIPLY OUT

= Cx+3)(x—2)2—x*(x—-2)<0

= (x—2)2x?—-x—-6—-x%)< 0 I
= x—2)(x—-3)x+2)< 0 /\

-3 2 -1 1 2 3 4
= x<—=2,0r2<x<3

Note — care is needed when the inequality is < or >.

x 2
) : R S ~ ~
Example 2:  Solve the inequality = a3 X#-1, X#-3
Solution: Multiply both sides by (x + 1)%(x + 3)? which cannot be zero
= x(x+ 1D (x+3)% =2(x+3)(x + 1)? DO NOT MULTIPLY OUT

=  x(x+DE+3)2-2(x+3)x+1D?>=>0

= (x+1D(x+3)(x?+3x—-2x—-2)=>0

= x+DEx+3)x+2)(x—1)=0

from sketch it looks as though the solution is \ /

55 -
x<—3 or —2<x<;—1 or x=1

BUT since x#-1, x #-3,

the solution is x<-3 or —2<x<-1or x=21
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Graphical solutions

Example 1:  On the same diagram sketch the graphs of y = % and y = x — 2.

Use your sketch to solve the inequality % > xX-2
Solution: First find the points of intersection of the two graphs

2x

= — = X-2 /
x+3

= 2x = x> +x—6

= 0=(x—-3)(x+2)

= x=-2or 3

From the sketch we see that

RS N

x<-3 or —2<x<3. Note that x = -3

For inequalities involving |2x —5| etc., it is often essential to sketch the graphs first.

Example 2:  Solve the inequality |x*—19| < 5(x — 1).

Solution: It is essential to sketch the curves first in order to see which solutions are needed.

To find the point A, we need to solve
—(x2—-19)=5x—-5 = x?+5x—24=0
= (x+8)x—-3)=0 = x=—-8or 3

From the sketch x # -8 = X=3
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To find the point B, we need to solve
+(x?-19)=5x -5 = x> —5x—14=0
= x-7)xx+2)=0 = x=-2or7
From the sketch x # -2 = X=7

and the solution of [x* — 19| < 5(x—1) is 3<x<7

2 Series — Method of Differences

The trick here is to write each line out in full and see what cancels when you add.

Do not be tempted to work each term out — you will lose the pattern which lets you cancel when
adding.

Example 1:  Write in partial fractions, and then use the method of differences to find

r(r+1)
1

n 1 1 1 1
the sum E = — 4+ —+—F _
soq Tr+D)  1x2 | 2x3 | 3x4 nn+1)

. 1 1 1
Solution: = = - —
r(r+1) r r+1
1 1 1
put r=1 = T2 = 7 —,77 >
_ 11
put r=2 = 2x3 2 713
_ E S VLA |
put r=3 = ~ = 3 713
etc. L=
1 1 & 1
put r=n = = = - —
n(n+1) n n+1
adding = Y?'—— = 1 - —— = L
g 1r(r+1) n+1 n+1
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Example 2:  Write

in partial fractions, and then use the method of differences to

r(r+1)(r+2)
n
. 1 1 1 1 1
find the sum z = + o ———__
r=1 r+1D(r+2) 1X2X3  2X3X4  3%x4X5 n(n+1)(n+2)
. 2 1 2
Solution: —_— = - - = 4 —
r(r+1)(r+2) T r+1 r+2
2 1 2 1
put r=1 = 1x2x3 -1 2 ":,7/'§
L
2 1 2 1
put r=2 = T T 2 73 +,,7IZ
2 1 & 2 T
putr=3 = 5o T 3 7 4:,775
2 1 2F 1
put r=4 = 4X5X6 T4 _,7/' 5 ":775
i L
etc.
/ﬂ /ﬂ
: ‘:/ ‘:/
2 1 2 1
PULTEN L = e~ w1 7 T
- 2 _ lel 2o, 1
put r=n = n(n+1)(n+2) n n+1 n+2
i n__ 2 - 1_2,1, 1 2 1
adding = %3 r(r+1)(r+2) 1 2 + 2 + n+l1  n+l t n+2
-1t . 1
T2 n+l  n+2
_ n?+3n+2-2n—4+2n+2
- 2(n+1)(n+2)
. yn 2 _ n?+3n
1 r(r+1)(r+2) 2(n+1)(n+2)
. Zn 1 _ n2+3n
1 r(r+1)(r+2) 4(n+1)(n+2)
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3  Complex Numbers

Modulus and Argument

The modulus of z=x+1iy isthe length of z

= r=|z| =x?+y? z

and the argument of z is the angle made by z r
with the positive x-axis, between —z and z.

N.B. arg z is not always equal to tan™?! G)

Properties
Z=rcosd +irsinéd

Z

w

_

lzw| = |z||w], and =
lwi

arg (zw) = argz + argw, and arg (%) = argz — argw

Euler’s Relation e

z=e"” = cosf+ising
é =e ' =cosf—ising
(&) | -
Example: Express 5e\'+/ inthe form x +iy.
Solution: Se(BTn) = 5(COS (3_”) + isin (3_”))
: " ;
= —_Sﬁ + Lﬂ
2 2

Multiplying and dividing in mod-arg form

rel® x se'® = rsel@+9)

= (rcos@ +irsinf) xX(scos¢p +issing) = rscos(6 + ¢)+ irssin(@ + ¢)
and

. . ——
re « sel® = ;e‘(e ®)

= (rcos@ +irsinf) +~(scos¢p +issing) = gcos(9—¢)+ igsin(e—d))
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De Moivre’s Theorem
(re®)" = rmei® = (rcos® +irsinB)" = (r"cosnf + i r" sinnd)
Applications of De Moivre’s Theorem
Example: Express sin 5@ interms of sin @ only.
Solution: From De Moivre’s Theorem we know that
cos 560 + isin560 = (cos 8+ isin 6)°
= €0s°@ + 5i cos*d sind + 10i° cos>@ sin*@ + 10i° cos?d sin’@ + 5i* cosd sin‘ +i° sin°@

Equating complex parts

—  sin560 = 5co0s*@ sin® — 10 cos? sinH + sin°@

5(1—sin?6)?sind — 10(1 —sin’d) sin®0 +sin°0

16 sin°0 — 20sin®@ + 5sind

1 1 ..
Z"+—= = 2cosnf and z"—z—n=215|nm9

zn -
Z = cos@ +isind

= z" = (cos@ +isinf)" = (cosnb + i sinnbh)

and == (cos@ —isin@)™ = (cosnf — i sinnh)

zn -
from which we can show that
(z+l)=20059 and (z—l)=2isin9
VA VA
"+~ =2cosnf and z"——= = 2isinno

zn zn

Example: Express sin’@ interms of sin56, sin36 and sind.

Solution: Here we are dealing with siné, so we use

(2isin8)® = (z—l)5

VA

= 32isin®0 = 25— 5z% G) + 1023 (Ziz) 1022 (ZLS)J, 5, (i)_ (i)

74 25
(= %) =5(=* = )+ 10(2 =)

= 32isin®@ = 2isin50 - 5x2isin30 + 10 x 2isind

= 32isin® 6

= sin’@ = i(sin 50 — 5sin 36 + 10sin 9)
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n" roots of a complex number

The technique is the same for finding n™ roots of any complex number.

Example: Find the 4™ roots of 4 + 4i, and show the roots on an Argand Diagram.
Solution: We need to solve the equation  z* = 4 + 4i
1. Let z = rcos@ +irsiné@
= 7' = r*(cos40 +isin46)
2. |4+4i|=V42+42=y32 and arg(4+4i) = 2
= 4+4i = V32(cos; +isin7)
3. Then z*'=4+4i
becomes r*(cos 46 +isin46) = 32 (cos7 +isin7)
—_ ot . . 9 .
= V32 (cos—- +isin~) adding 2z
= \/ﬁ(coslTT” +i sianT” adding 2z
= \/ﬁ(cosz%’r +i sinZ?T” adding 2z
4. = r* =432
- 9 17m 257
and 46?—4, 7 1 .
= r =132 = 15422
- T 9 17m 25w
and 0_16’ 16' 16 ' 16
5. =  rootsare V32 (cos - +isin ) = 1513 + 0.301i
V32 (cos = +isin = = -0.301+1.513
16 16
V32 (cos = +isin=F) = -1513 —0.301 ]
V3Z(cos 2 +isinZF) = 0301 -1513i

-4 -2 \ 2 4
=1

-2

Notice that the roots are symmetrically placed around the origin, and the angle between
T

.2 . 2
roots is T” = ~ Theangle between the n™ roots will always be 7” .

For sixth roots the angle between roots will be 2?" = g , and so on.
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Roots of polynomial equations with real coefficients

1. Any polynomial equation with real coefficients,
Apx™ + Ay x4 4, x4 apx?+ agx+ ap =0, ... ()
where all a; are real, has a complex solution

2. = any complex n™ degree polynomial can be factorised into n linear factors over the
complex numbers

3. If z=a+ib isarootof (I), then its conjugate, a —ib is also a root.

4. By pairing factors with conjugate pairs we can say that any polynomial with real
coefficients can be factorised into a combination of linear and quadratic factors over the
real numbers.

Example: ~ Giventhat 3—2i isarootof z°-5z2+7z+13=0
@) Factorise over the real numbers
(b) Find all three real roots

Solution:
@ 3—2i isaroot = 3+ 2i isalso aroot
=  (@Z-(B-2)z-(3+2i) = (Z*-6z +13) isa factor
= -5 +77+13= (Z2 -6z +13)(z+1) by inspection

(b) = rootsare z = 3-2i, 3+2i and -1

Loci on an Argand Diagram

Two basic ideas

1. lz—wl is the distance from w to z.
2. arg (z— (1 +1)) isthe angle made by the line joining (1+i) to z, with the x-axis.

Example 1:

|z—2—il =3 isacircle with centre (2 +i) and radius 3
Example 2:

lz +3-il = [z-2+i]

o |z —(3+)] = lz-@-)]

is the locus of all points which are equidistant
from the points

A(-3,1) and B (2, -1), and so is the
perpendicular bisector of AB.

10 FP2 NOV 2014 SDB



Example 3: \y

arg(z —-4) = 5?" is a half line, from (4, 0), making 2\

-2

5 f .
an angle of == with the x-axis. s b

-4

Example 4:
|z—-3] = 2] z+2il isacircle (Apollonius’s circle).
To find its equation, put z =x + iy
= |(x=3)+iyl = 2[x+i(y+2)| square both sides
= (x=3+y* = 4(x*+(y+2)?) leading to

= 3°+6x+3y°+16y+7 = 0

= (x+1) +(y+§)2 ==

-8 2v13

which is a circle with centre (-1, < ), and radius Tl :

Example 5:

arg (22) =
g z+5) 6

= arg(z—2)—arg(z+5) = g

= 0-¢ ==

which gives the arc of the circle as

shown.

N.B.

The corresponding arc below the x-axis

would have equation

z—2 _ T
arg (m) = "3

as @ — ¢ would be negative in this picture.

FP2 NOV 2014 SDB



Transformations of the Complex Plane

Always start from the z-plane and transform to the w-plane,z=x+1iy and w=u +iv.

Example 1:  Find the image of the circle |z—5]=3
. 1
under the transformation w = — .

z—2
Solution: First rearrange to find z
w= — = z7-2== = 7== 42
z—2 w w
Second substitute in equation of circle
= |%+2—5|=3 = |1_‘jw|=
= |1-3w|/=3w| = 3fz—w|=3lwl
1
= w=3|=wl

which is the equation of the perpendicular bisector of the line joining 0 to %

= the image is the line u :%
Always consider the ‘modulus technique’ (above) first;
if this does not work then use the u + iv method shown below.
Example 2:  Show that the image of the line x + 4y = 4 under the transformation

1 . . . . .
w=— isa circle, and find its centre and radius.

Solution: Firstrearrangetofindz = z= & + 3

The ‘modulus technique’ is not suitable here.

z=x+ily and w=u+iv

1 _ 1 1 u—iv

= 2= o¥3= ot s am a3

= X+iy = u:i:z"‘ 3

Equating real and imaginary parts x = uzzvz +3and y = uz__:vz
= X+4y=4 becomes ——+3 - —Z =

= W—u+V+4v =0

= (u—%)2+(v+2)2=%

V17

which is a circle with centre G —2) and radius 5

There are many more examples in the book, but these are the two important techniques.
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Loci and geometry

It is always important to think of diagrams.

Example: z lies on the circle |z - 2i| = 1.
Find the greatest and least values of arg z.

Solution: Draw a picture!

The greatest and least values of arg z
will occurat B and A.

Trigonometry tells us that

0=

ol

and so greatest and least values of

v

21 [
argz are — and 3

FP2 NOV 2014 SDB

13



4  First Order Differential Equations

Separating the variables, families of curves

Example:

Solution:

Find the general solution of

dy y
—_ = >
dx  x(x+1)' for x>0,

and sketch the family of solution curves.

o _ _ Y 1 — 1 - (1_ 1
dx = fydy_fx(x+1) dx_fx dx

dx x(x+1) x+1
= Iny = Inx —In(x+1) + InA

_ Ax _ A(x+1-1) 1
= y = x+1 x+1 = 4 (1 x+1)

Thus for varying values of A and for x > 0, we have

471y

A=3

2 A=2

A=1
X

2 4 6
A=-1
_2 R

==3

Exact Equations

In an exact the L.H.S. is an exact derivative (really a preparation for Integrating Factors).

Example:

Solution:

14

Solve sinx Z—z + ycosx =3x?

Notice that the L.H.S. is an exact derivative
. dy _ d .

sinx — +ycosx = — (ysinx)

d . _ 2
= —(ysinx) = 3x

= ysinx = [3*dx = X +c

x3+c

sinx

= y=
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Integrating Factors

Z—i’ +Py = Q where P and Q are functions of x only.

In this case, multiply both sides by an Integrating Factor, R = el Pax,
The L.H.S. will now be an exact derivative, ;—x (Ry).
Proceed as in the above example.

Example: Solve xj—z +2y =1
Solution: First divide through by x
= 4y + Ey = 1 now in the correct form
dx x x

2
Integrating Factor, I.F.,is R = eJP* = oJx9% = g2Inx = 2

2dy

= X~ +2xXy = X multiplying by x?
d , o _ . o
= E(x y) = X, check that it is an exact derivative
2 x?
=  Xy=Jxde=-+c¢
- _ 1, c
y = 2 x?

Using substitutions

Example 1:  Use the substitution y =vx (where v isa function of x) to solve the equation

dy _ 3yx2+y3

dx x34+ xy2 '
. dy dv
Solution: = VX — =V + X—
y = dx dx
d 3yx2+y3 dv 3(vx)x2%+ (vx)3 3v+ v3
N dy _ 3yxTHy" 4 3 = 3w0xTH )T
dx x3+ xy? dx x3+ x(vx)? 1+v2

and we can now separate the variables

- de _ 3v+v3 v = v+ v3-v—-v3 _ 20
dx 14+v2 1+v2 1+v2
1+v2 dv 1
= —_— 2 = =
2v dx X

1 v _ 1
= fﬁ*‘; dv —f;dx

2

1 v
= -lnv + — =Inx + ¢
2 4
_ Y 1,y v _
But v== = -In=+ = =Inx+c
x 27 x 4x2
2 2 _ 2 72 . .
= 2X“Iny +y"=6x"Inx + c’x c’is new arbitrary constant

and | would not like to find y!!!
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Example 2:
dy _ 2
Y + ycotx.
. 1 d -1d
Solution:  y=- 2= ==
z dx z4 dx
-1 dz 1 1
= — — = — + —cotx
z2 dx z2 z
d
= 2+ zcotx = —1
dx

Use the substitution y = i to solve the differential equation

Integrating factor is R = e/ cotx dx = plnGsinx) — gjp x

. dz .
= sinx o +zcosx = —sinx

d . .
= —(zsinx) = —sinx
dx

= Zsinx = cosx + ¢C

cosx+c
= 7= —
sinx
— __ sinx
y - cosx+c
Example 3:

dy
= cos(x +y)

Solution: Z=X+Yy - Z-14
dx
= &z _ 1+ cosz
dx
= f1+COSZ dZ: fdx

= f%secz(g) dz = x+c

= tan(g):x+c

+y

But z=x+y = tan(xT)=x+c

check that it is an exact derivative

but z =

Use the substitution z = x +y to solve the differential equation

separating the variables

zZ Z
1+cosz = 1+2cosz(z)—1= ZCOSZ(E)

16
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5 Second Order Differential Equations

Linear with constant coefficients

d?y

a— + bZ—z + ¢y = f(x) where a, b and c are constants.

dx?

(1) when f(x)=0

First write down the Auxiliary Equation, A.E

A.E.

am?+ bm+c=0

and solve to find theroots m = a or f8

(i)

(i)

(iii)

Example 1:

Solution:

uu

Example 2:

Solution:

RV

If « and B are both real numbers, and if a # 8
then the Complimentary Function, C.F., is
y =Ae™ + BeP* where A and B are arbitrary constants of integration

If « and B are both real numbers, and if « = f
then the Complimentary Function, C.F., is
y = (A+ Bx)e®, where A and B are arbitrary constants of integration

If « and B are both complex numbers, and if «a =a+ib, f =a—ib
then the Complimentary Function, C.F.,
y = e*(Asinbx + B cos bx),
where A and B are arbitrary constants of integration
d?y dy _
Solve TxZ + 2; -3y =0
AE. ism?+2m—-3=0
m—-1)(m+3)=0

m =1 or -3

y = Ae* + Be 3% when f(x) = 0, the C.F. is the solution
d’y dy _

Solve — + 6—+ 9y =0

AE.is m?*+ 6m+9= 0

(m+3)2=0
m = -3 (and -3) repeated root
y = (A + Bx)e™3* when f(x) = 0, the C.F. is the solution

FP2 NOV 2014 SDB
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Example 3:  Solve % + 4% + 13y =0
Solution: AE.is m*+ 4m+13= 0
= (M+2P°-@Bi?=0
= M+2+3i))(m+2-3i)=0
= m=-2-3i or -2+3i
= y = e **(Asin3x + B cos 3x) when f(x) = 0, the C.F. is the solution

18

(2) when f (x) £ 0, Particular Integrals
First proceed as in (1) to find the Complimentary Function, then use the rules below to
find a Particular Integral, P.I.

Second the General Solution, G.S. , is found by adding the C.F. and the P.1.

= GS. =CF + P.L

Note that it does not matter what P.l. you use, so you might as well find the easiest,
which is what these rules do.

(1)  fx) =

Try y=Ae"
unless e appears in the C.F., in which case try y = Cxe*

unless xe appears in the C.F., in which case try y = Cx%"*.

(2) f(x) =sinkx or f(x)=coskx

Try y=Csinkx + D coskx
unless sin kx or cos kx appear in the C.F., in which case
try y=x(Csinkx + D coskx)

3 f (x) = apolynomial of degree n.

Try f(X) = apx™+ ap1x" 1+ a,x" 2+ L tax+ a
unless a number, on its own, appears in the C.F., in which case
try f(X) = x(apx™+ ap_1x™ 1+ ap_,x" 2+ .+ ax + ag)

4) In general

to find a P.1., try something like f (x), unless this appears in the C.F. (or if there is
a problem), then try something like x f (x).
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: ay dy _
Example 1:  Solve oz T 6dx + 5y = 2x
Solution: AE. is m*+6m+5=0

= (m+5(m+1)=0 = m=-5 or -1
= CF.is y=A4e™ 5 + Be™

FortheP.l.,try y=Cx+D

dy d?y
= = nd — =
= ™ C a 2 0

Substituting in the differential equation gives
0 + 6C + 5(Cx+ D) =2x

= 5C=2 comparing coefficients of x
- Cc=:2
5
and 6C + 5D =0 comparing constant terms
-12
= D=—
25
. 2 12
= P.1. ISy—EX—E
= GS. is y=A4e>* + Be‘x+§x—£
. a2y _ oy — p3x
Example 2:  Solve ™ 6dx + 9y = e
Solution: AE.is is m*-6m+9=0
= (M-37=0
= m=3 repeated root
= CF.is y=(Ax+ B)e3*

In this case, both e3* and xe3* appear in the C.F.,
soforaP.l.wetry y = CxZ%e3¥

= Z—z = 2Cxe3* + 3Cx%e3*

d?y
dx?

and = 2Ce3 + 6Cxe3* + 6Cxe3* + 9Cx?%e3*

Substituting in the differential equation gives

2Ce3* + 12Cxe3* + 9Cx?e3* — 6(2Cxe3* + 3Cx%e3*) + 9 Cx%e3* = 3%
2Ce3* = 3%

c=:
2

. 1
Plis y= Exze3x

u v Ul

G.S.is y=(Ax + B)e3 + %xze“

FP2 NOV 2014 SDB
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. d?x
Example 3: Solve — -x = 4cos2t

dt?
giventhat x=0and x =1 when t=0.

Solution: AE.is m’-1=0

20

= m = %1
= C.F.is x =Ae'+ Be™t
Forthe P.I1.try x = Csin2t + D cos2t

= x = 2Ccos2t —2Dsin?2t
and ¥ = —4Csin2t — 4D cos2t

Substituting in the differential equation gives

(—4Csin2t — 4Dcos2t) — (Csin2t + Dcos2t) = 4cos 2t

= -5C =0 comparing coefficients of sin 2t
and -5D =4 comparing coefficients of cos 2t
= C=0 and D = _75
= Plis x= _TSCOSZt
= G.S.is x = Aet + Be™t — %cos 2t
= x = Aet — Be ' + %sin 2t
x=0and when t=0 :>O:A+B—§
and x =1 when t=0 = 1=A-B
= A=2 and B = 1
8 8
. 9 .1 4 5
= solution is x=ce + se -~ ZCOSZt
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Zy

2d% dy _
D.E.s of the form ax”— + bx—~+ cy = f(x)

Substitute x =e"

dx u
= — = e =X
du
dy dx _ dy dy dy
n =T x = — =x— result |
and du du dx = du xdx
dy
d2 a®/ d /d dx
But ay (/) = () X — using the chain rule
du? du dx du
dy
d(x /dx) dx .
= —— X — using result |
dx du
d*y dy) dx
= |x— —] X — roduct rule
( dx? T dx du P
a2y 2 d2%y dy L ax
= - = xi== xX—= since — = x
du? dx? + dx du
d? d? d
= P A A A using result |
dx? du? du
d? d? d d d
Thuswe have x222 = 22 _ 2 gpd x2 = 2
dx? du? du dx du

substituting these in the original equation leads to a second order D.E. with constant
coefficients.

2
Example: Solve the differential equation x23732' - BxZ—i + 3y = —2x2
Solution: Using the substitution x = €", and proceeding as above
2 d%y d*y dy dy dy
x°—= = — — — and x—= = —=
dx du du dx du
@y _ay _ gay _ e
= du? du 3du + 3y = —Ze
dz_y — d_y — 2u
= Tz 4—- + 3y = —2e
= AE.is m*-4m+3=0
= m-3)(m-1) =0 = m=3orl
= C.F.isy = Ae® + Be"

For the P.1. try y = Ce®

2
2 = 2ce? and T = 4Ce™

= du du?

= 4Ce?™ — 8Ce?™ + 3Ce?™ = —2e%
= C=2

=  GS.isy = Ae* + Be' + 2¢®

But x=e¢' =  GS.isy=AC + Bx + 2
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1)

2)

3)

4)

22

Maclaurin and Taylor Series

Maclaurin series

FG) = FO+ xf'(0)+ ZF7(0) + Zf(0) + - + X fFm(0) + -

Taylor series

fx+a)= fl@+ xf'(a)+

x2

5@+ ’;—Tf”’(a)+--- + %f”(a) + e

Taylor series — as a power series in (x —a)

replacing x by (x—a) in2) we get

f@) = f@) + (- a)f @+ L (@) + 2 (@) + o+ T (a) 4

Solving differential equations using Taylor series

(@)

(b)

If we are given the value of y when x =0, then we use the Maclaurin series with

f(0) = yo the value of y when x =0

0) = d_y> ay _
f (0) = (dx 0 the value of ™ when x=0
etc. to give

r@=y =+ x(F) + 52, 5G), -+ (G,

If we are given the value of y when x = a, then we use the Taylor power series

with
fla) = vy, the value of y when x=a
1] dy dy
f'(a) = (—) the value of == when x=a
dx/ g dx
etc. to give

Y= vt -0y (2) + &2 (ZTY)a + (%)a 4.

a

NOTE THAT 4 (a) and 4 (b) are not in the formula book, but can easily be found

using the results in 1) and 3).
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Standard series

x? x3 x"
*=1+4+x +;+ BTl + e+ F+ converges for all real x

3 5 2n—-1

sinx = x — %+ J; + (1)t (;Cn o + - converges for all real x
x2 x4 noi xn2

cosx =1-— E-I_ m -+ (-1) a2 converges for all real x

x2  x3 n-1x"
In(1+x) = X=Z+ =+ (-1) +--- converges for -1 <x<1
(1+x)"—1+nx+n(n Dy2 4. --+w T converges for —1<x<1

Example 1:

Solution:
=
=

=

and

Example 2:

r!

Find the Maclaurin series for f(x) = tanx, up to and including the term in x*

f(x) = tanx = ) =0
f'(x) = sec?x —~  f"0)=1
f'"(x) = 2sec? x tan x —  F"(0) =0
f"(x) = 4sec? xtan? x + 2sec*x = f¥0)=2

f@) = FO)+ 2@+ SF0) + T0) + -+ TR0+

2 3
tanx = 04+ x X1 + %X0+ %XZ up to the term in x*

%3

3

IR

tan x X +

Using the Maclaurin series for €* to find an expansion of ex+i’ up to and

including the term in x°.

Solution:

2 3
eX=1+x+>+>+ ..
2! 3!

3
X+x x+x?
et = 1+ (x+x2)+ ( ) + ( 5 ) up to the term in x®
x242x34-+  x34
= 14+x+x%2+ o + 2 up to the term in X3
x+x? ~ 3.2 7.3 L3
e = 1+x+5x + X up to the term in x
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Example 3:  Find a Taylor series for cot (x + g) up to and including the term in X2

Solution: f(x) = cotx and we are looking for
T\ _ T (T x2 (T
F+d) =r Q)+ G+ 5 rG)
T
f(x) = cotx - f(z)—l
' - _ 2 N (3
= f'(x) = —cosec” x = f (4) =-2
= f"(x) = 2cosec? x cotx = " (%) =4
2
= cot(x+£) = 1-2x+ 3" x4 up to the term in x?
4 2!
= cot (x + %) = 1—2x+ 2% up to the term in x?

Example 4:  Use a Taylor series to solve the differential equation,

2 2
y% + (Z—i) +y=0 equation |
up to and including the term in x?, given that y =1 and % = 2 when x=0.

In this case we shall use

f@) = FO+ xf' @+ ZF70) + ZF0) + - + Zfn(0) + -

= v=y+a(g) + 563, 56,

We already know that yp =1 and (Z—i) =2 values when x =0
0
2 2
= (d—Z) = (—l(d—y) - 1) = -5 values when x =0
dx</ y \dx 0
Differentiatin &y + (d—y)z + y=0
9 dx? dx y
Py | dy, dy .y Ay _
= ydx3+dxxdx2+2dxxdx2+dx =0
I d dz
Substituting yo = 1, (ﬁ)o =2 and (ﬁ)o = -5 values when x = 0

a3 - _
N (ﬁ)(ﬁz X(T5)+2x2x(5)+2=0

- (@),

2
—  solutionis y =1+ 2x+ ’;—'x(‘5)+’;—><28

= y=l42x— 2x? 4123
2 3
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Series expansions of compound functions

Example: Find a polynomial expansion for
2 . . :
ke , up to and including the term in x°.
1-3x
Solution: Using the standard series
_ (2x)?
cos2x = 1 — + -

2!

and  (1-3x)70 =1+3x+——

=14+3x+9x%+27x3

2 2
- COS 2x :(1_(2x) )(1+3x+9x2 —|—27X3)
1-3x 2!
=1+ 3x +9x% + 27x3 — 2x% — 6%
2
N cosx:1+3x+7x2+21x3
1-3x

up to and including the term in x®

—1X—-2X-3

(—3x)% + — (—3x)3

up to and including the term in x®

up to and including the term in x®

up to and including the term in x®
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7 Polar Coordinates

The polar coordinates of P are (r, 8)

P(r, 9)
r = OP, the distance from the origin or pole, ;
and @ is the angle made anti-clockwise with the o f
initial line. pole initial line

In the Edexcel syllabus r is always taken as positive

(But in most books r can be negative, thus (—4, g) is the same point as (4, 37") )

Polar and Cartesian coordinates

Ary
From the diagram
r=yxt+ys P )
and tan = ~ (use sketch to find ). er y
X =rcoséd and y = rsin 4. X g

Sketching curves

In practice, if you are asked to sketch a curve, it will probably be best to plot a few points. The
important values of & are those for which r =0.

The sketches in these notes will show when r is negative by plotting a dotted line; these sections
should be ignored as far as Edexcel A-level is concerned.

Some common curves

r=a+bcos0O

Cardiod Limacon without dimple Limacon with a dimple
a=>b a>2b, b<a<2b
41y r=3+3cos 0 4 41y
r=3+1.4cos 8 r=3+2cos @
2 2 2
1 1 1
X A X
2 4 2 4 6 2 4 6

26
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Limacon with a loop Circle Line
a<b
r negative in the loop r negative in bottom half
41y 41y 4ty
3 r=2+3coseo r=3 3 6 =1/6
2 2
1 1
- X
—r
. 2 4 6 ///_1
L
-2 '// -2
-3 -3
-4 -4 -4
Line Line Circle
4 4
41y Y r =3 cosec 6 Y
3 o 3
r=4cos@
2 2 2 ¢
1 1 1/_\
-1 -1 -1 v
-2 -2 -2
-3 -3 -3
o r=3secH 4 4
Rose Curves
r=4cos 380 r=4cos 360
0<09<r L 0L 2x
41y y
3
r=4 cos 36 r=4 cos 36

I/

K

I

I
1
I
1
v

N,

e

S

below x-axis, r negative
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r=3cos48

44Ly
r=3 cos 40

Thus the rose curve r = a cos@ always has n petals, when only the positive values of r are
taken.

Leminiscate of Bernoulli Spiral r=26 Spiral r=¢’

21 r*=16 cos 20

Circle r=10cos @

Notice that in the circle on OA as diameter, the P
angle P is 90° (angle in a semi-circle) and 47
trigonometry gives us that r =10 cos 4. ol L
(@) 0 A
5 0
-2+
-4
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Circle r=10sin @

In the same way r = 10 sin @ gives a circle on the y-axis.

Areas using polar coordinates

. 1
Remember: area of a sector is ;rzé)

Areaof OPQ = oA ~ ~r260

—  Area OAB~ Z(%rZSH)

as 08 -0
0]
=  Area OAB = [,? 2r?do
1 2
Example: Find the area between the

curve r=1+tan @
and the half lines @ =0 and 6 =2

3
P — (31,2
Solution: Area = [ 73 -r*d6
2
= fon/3 1(1+tan6)? do
— 7T/3 1 2
= fo 1(1+2tan6 +tan®0) do

= fon/3 1(2tan@ + sec*6) do

[2In(sec ) + tan 9]::/3

N |-

= In 2 M
2
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Tangents parallel and perpendicular to the initial line

y=rsinf and x =rcosf

dy
- d
*/ae

dx

d
" ae

1) Tangents will be parallel to the initial line (= 0), or horizontal, when Z—z =0

dy
= T 0
2 (rsing) = 0
= e (rsinf) =
2) Tangents will be perpendicular to the initial line (8= 0), or vertical, when Z—z is infinite
dx
= T 0
< 0) = 0
= " (rcos@) =
Note that if both Z—Z =0 and Z—Z = 0, then Z—Z is not defined, and you should look at a sketch

to help (or use I'Hopital's rule).

Example:
(a)
(b)

Solution:

(@)

=

U

30

Find the coordinates of the pointson r = 1 + cos & where the tangents are

parallel to the initial line,
perpendicular to the initial line.

r =14 cos@ isshown in the diagram.
Tangents parallel to =0 (horizontal)

dy _ i . _
E_O = dg(rsmé?) =0

;—9((1+0059)sin0)= 0 =
cos @ —sin? @ + cos? 6 = 0 =
(2cosB —1)(cos6+1)= 0 =
0=i§ or

Tangents perpendicularto =0 (vertical)

Z—:zO = ;—H(rcose) =0
:—9((1+c059)c059)= 0 =
—sinf —2cosfsinf = 0 =
cosf = —% or sinf =0

Bziz?” or 0,7

i(sin6?+sin9cosé?)= 0
a6
2cos?64+cosf—1=0

1
c059=5 or —1

;—Q(COSH +cos?20)= 0

sinf (1+2cosf) =0
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From the above we can see that

(@)

(b)

(©)

the tangent is parallel to 6 =0 1
Vs Vs
at B (6="1)and E(6=-5)

also at 8 = m, the origin — see below

the tangent is perpendicularto € =0 -1

at A(0=0), C (9:%”) and D (9:‘—2”)

3

we also have both ax _ 0and 2 =0 when 6 = 7!l
de de

From the graph it looks as if the tangent is parallel to @ =0 at the origin, (6 = m),

and from I'HOpital's rule it can be shown that this is true.

>
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Index

complex numbers, 7
applications of De Moivre’s theorem, 8
argument, 7
De Moivre’s theorem, 8
Euler’s relation, 7
loci, 10
loci and geometry, 13
modulus, 7
nth roots, 9
roots of polynomial equations, 10
transformations, 12
differential equations. see second order
differential equations, see first order
differential equations
first order differential equations, 14
exact equations, 14
families of curves, 14
integrating factors, 15
separating the variables, 14
using substitutions, 15
inequalities, 3
algebraic solutions, 3
graphical solutions, 4

32

Maclaurin and Taylor series, 22
expanding compound functions, 25
standard series, 23
worked examples, 23

method of differences, 5

polar coordinates, 26
area, 29
cardiod, 26
circle, 28
leminiscate, 28
polar and cartesian, 26
r=acosnég, 27
spiral, 28
tangent, 30

second order differential equations, 17
auxiliary equation, 17
complimentary function, 17
general solution, 18
linear with constant coefficients, 17
particular integral, 18
using substitutions, 21
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