The U/fimate Formula Sheet for SAT Math

These formulas are provided in the reference information at the beginning of each SAT math section:
Area of a Circle: $A=\pi r^{2} \quad$ Volume of a Rectangular Prism (Box): $V=I w h$
Circumference of a Circle: $C=2 \pi r$
Area of a Rectangle: $A=I w$
Area of a Triangle: $A=\frac{1}{2} b h$
Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$
Special Right Triangles:
Volume of a Cylindar: $V=\pi r^{2} h$
Volume of a Sphere: $V=\frac{4}{3} \pi r^{3}$
Volume of a Cone: $V=\frac{1}{3} \pi r^{2} h$
Volume of a Pyramid: $V=\frac{1}{3} I w h$

Fractions, Decimals, and Percentages: (for this section, r is the percent in decimal form)
Fraction $=\frac{\text { part }}{\text { Increase by a percent: } \text { multiply by }(1+r) ~}$
Decrease by a percent: multiply by (1-r)
percent $=\frac{\text { part }}{100}$
Percent Increase or Decrease:
$\frac{\mid \text { old }- \text { new } \mid}{\text { old }} \times 100 \%$
Simple Interest: $A=P(1+r t)$
Interest Compounded Annually: $A=P(1+r)^{t}$
Interest Compounded n times per year:
$A=P\left(1+\frac{r}{n}\right)^{n t}$

Rates, Ratios, and Proportions:

General form of a conversion factor:
$\left(\frac{\text { ending_units }}{\text { starting_units }}\right)$
Concentration of $\mathrm{A} \times$ Volume of A

+ Concentration of $B \times$ Volume of B
$=$ Final concentration (Vol. of A + Vol. of B)
Distance $=$ Rate \times Time
Example: 10 feet $\left(\frac{12 \text { inches }}{1 \text { foot }}\right)=120$ inches

Exponents, Roots, \& Polynomials:

Multiplication Rule for Exponents: $a^{b} \cdot a^{c}=a^{b+c}$
Division Rule for Exponents: $\frac{a^{b}}{a^{c}}=a^{b-c}$
Power Rule for Exponents: $\left(a^{b}\right)^{c}=a^{b c}$

Negative Exponents: $a^{-b}=\frac{1}{a^{b}}$
Fractional Exponents: $a^{\frac{b}{c}}=\sqrt[c]{a^{b}} \operatorname{or}(\sqrt[c]{a})^{b}$
$i^{2}=-1 ; i^{3}=-i ; i^{4}=1$
$i^{4 n}=1 ; i^{4 n+1}=i ; i^{4 n+2}=-1 ; i^{4 n+3}=-i$

Parabolas:

Standard Form: $f(x)=a x^{2}+b x+c$;
vertex $=\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$;
Discriminant $=b^{2}-4 a c$; Pos=2 real roots Zero= 1 real root; Neg=2 imaginary roots

Factored Form: $f(x)=a(x-m)(x-n)$;
x -intercepts are m and n ;
x-coordinate of vertex $=\frac{m+n}{2}$
Vertex Form: $f(x)=a(x-h)^{2}+k$;
Sum of solutions $=\frac{-b}{a}$
vertex $=(h, k)$

Difference of Squares: $a^{2}-b^{2}=(a+b)(a-b)$
Perfect Square Trinomial: $a^{2}+2 a b+b^{2}=(a+b)^{2}$ and $a^{2}-2 a b+b^{2}=(a-b)^{2}$
Completing the Square: $x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}$

Graphing Lines:

Slope Formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Slope of horizontal line $=0$
Slope of vertical line = undefined

Standard Form: $A x+B y=C$
Slope-Intercept Form: $y=m x+b$
Point-Slope Form: $y-y_{1}=m\left(x-x_{1}\right)$
Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Midpoint Formula: $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Parallel lines: equal slopes
\perp Lines: slopes are opposite reciprocals

Data and Probability:
average $=\frac{\text { sum_of_items }}{\text { number_of_items }}$
range $=$ maximum - minimum
median = middle_number
probability $=\frac{\text { desired_outcomes }}{\text { possible_outcomes }}$

Angles:

Vertical \angle 's are \cong	\angle^{\prime} 's that form a circle add up to 360°
\angle 's that form a linear pair are supplementary (add	When II lines are cut by a transversal, all acute $\angle \angle^{\prime}$ s
up to 180°)	are \cong and all obtuse $\angle \angle^{\prime}$ s are \cong

Triangles:

The three \angle^{\prime} 's of a Δ add up to 180°
Pythagorean Triples: 3-4-5 and 5-12-13
An exterior \angle is equal to the sum of the two remote interior \angle 's

Circles:

A radius and tangent make a right \angle

A central \angle is double the inscribed \angle

$\frac{x}{360}=\frac{\text { arc }}{\text { circumference }} \quad$ and $\quad \frac{x}{360}=\frac{\text { sector }}{\text { area_of_circle }} \quad$ where $x=$ central angle
Formula for a Circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$, where (h, k) is the center and r is the radius

Polygons: (for this section, n is the number of sides)

Area of a trapezoid: $\frac{1}{2}\left(b_{1}+b_{2}\right) h$
One interior angle of a regular polygon:
$\frac{180(n-2)}{n}$
Sum of the interior angles: 180(n-2)
Sum of the exterior angles: 360°
Properties of Parallelograms:

1. Opp sides are \|l and \cong
2. Diagonals bisect each other
3. Opp \angle 's are \cong
\rightarrow If they are \cong it is a rectangle
4. Consec \angle 's are supplementary
\rightarrow If they are \perp it is a rhombus
5. Each diagonal forms a pair of $\cong \Delta^{\prime}$'s
6. Area $=$ base \times height

Trigonometry:

$$
\sin =\frac{o p p}{h y p} \quad \cos =\frac{a d j}{h y p} \quad \tan =\frac{o p p}{a d j} \quad 360^{\circ}=2 \pi \text { radians }
$$

$\sin (x)=\cos (90-x)$ The sine of an \angle is equal to the cosine of its complement.

Parent Graphs \& Transformations:

$$
y=x \quad y=|x|
$$

$y=x^{2}$

Visual effect
Shift up by k units
Shift down by kunits
Shift left by h units
Shift right by h units
Reflect over the x axis (flip upside down)
Stretch vertically by a factor of c (becomes skinnier)
Shrink vertically by a factor of c (becomes fatter)

