These formulas are provided in the reference information at the beginning of each SAT math section:

Area of a Circle: $A = \pi r^2$

Circumference of a Circle: $C = 2\pi r$

Area of a Rectangle: A = Iw

Area of a Triangle:
$$A = \frac{1}{2}bh$$

Pythagorean Theorem: $a^2 + b^2 = c^2$

Volume of a Rectangular Prism (Box): V = lwh

Volume of a Cylindar: $V = \pi r^2 h$

Volume of a Sphere:
$$V = \frac{4}{3}\pi r^3$$

Volume of a Cone:
$$V = \frac{1}{3}\pi r^2 h$$

Volume of a Pyramid:
$$V = \frac{1}{3} lwh$$

 $x\sqrt{3}$

Fraction = $\frac{part}{whole}$ $percent = \frac{part}{100}$ Percent Increase or Decrease:

 $\frac{|old - new|}{old} \times 100\%$

Increase by a percent: multiply by (1+r)Decrease by a percent: multiply by (1-r)Simple Interest: A = P(1+rt)Interest Compounded Annually: $A = P(1+r)^t$

Interest Compounded n times per year:

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

Rates, Ratios, and Proportions:

General form of a conversion factor:

Example: $10feet\left(\frac{12inches}{1foot}\right) = 120inches$

Concentration of A x Volume of A

+ Concentration of B x Volume of B

= Final concentration (Vol. of A + Vol. of B)

Distance = Rate x Time

Exponents, Roots, & Polynomials:

Multiplication Rule for Exponents: $a^b \cdot a^c = a^{b+c}$ Division Rule for Exponents: $\frac{a^b}{a^c} = a^{b-c}$

Power Rule for Exponents: $(a^b)^c = a^{bc}$

Parabolas:

Standard Form: $f(x) = ax^2 + bx + c$;

vertex= $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right);$

y-intercept = c;

x-intercepts =
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sum of solutions = $\frac{-b}{a}$

Fractional Exponents: $a^{\frac{b}{c}} = \sqrt[c]{a^b} or (\sqrt[c]{a})^b$

$$i^{2} = -1; i^{3} = -i; i^{4} = 1$$

 $i^{4n} = 1; i^{4n+1} = i; i^{4n+2} = -1; i^{4n+3} = -i$

Discriminant = $b^2 - 4ac$; Pos=2 real roots Zero= 1 real root; Neg=2 imaginary roots

<u>Factored Form</u>: f(x) = a(x-m)(x-n);

x-intercepts are m and n;

x-coordinate of vertex = $\frac{m+n}{2}$ <u>Vertex Form</u>: $f(x) = a(x-h)^2 + k$;

vertex =
$$(h,k)$$

Difference of Squares: $a^2 - b^2 = (a+b)(a-b)$

Perfect Square Trinomial: $a^2 + 2ab + b^2 = (a+b)^2$ and $a^2 - 2ab + b^2 = (a-b)^2$

Completing the Square: $x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$

Graphing Lines:

Slope of horizontal line = 0

Slope of vertical line = undefined

Standard Form:
$$Ax + By = C$$

Slope-Intercept Form: y = mx + b

Point-Slope Form: $y - y_1 = m(x - x_1)$

Distance Formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Midpoint Formula: $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Parallel lines: equal slopes

 \perp Lines: slopes are opposite reciprocals

Data and Probability:

sum_of_items average = number of items

median = middle_number

Angles:

Vertical \angle 's are \cong

∠'s that form a linear pair are supplementary (add up to 180°)

Triangles:

The three \angle 's of a \triangle add up to 180°

An exterior \angle is equal to the sum of the two remote interior \angle 's

Circles:

A radius and tangent make a right ∠

Χ	arc	and	x	sector	where x = central angle
360	circumference		360	area_of_circle	

Formula for a Circle: $(x-h)^2 + (y-k)^2 = r^2$, where (h,k) is the center and r is the radius

range = maximum – minimum

probability = desired_outcomes possible_outcomes

 \angle 's that form a circle add up to 360°

When || lines are cut by a transversal, all acute \angle 's are \cong and all obtuse \angle 's are \cong

Pythagorean Triples: 3-4-5 and 5-12-13

A central \angle is double the inscribed \angle

Polygons: (for this section, n is the number of sides)

Area of a trapezoid: $\frac{1}{2}(b_1 + b_2)h$	One interior angle of a <u>regular</u> polygon: $180(n-2)$					
Sum of the interior angles: $180(n-2)$	n					
Sum of the exterior angles: 360°						
Properties of Parallelograms:						
1. Opp sides are $∥$ and $≅$	5. Diagonals bisect each other					
2. Opp ∠'s are \cong	→ If they are \cong it is a rectangle					
3. Consec ∠'s are supplementary	\rightarrow If they are \perp it is a rhombus					
4. Each diagonal forms a pair of ≅Δ's	6. Area=base×height					
Trigonometry:						
$\sin = \frac{opp}{hyp}$ $\cos = \frac{adj}{hyp}$ $\tan = \frac{opp}{adj}$	360°=2π radians					
$sin(x) = cos(90 - x)$ The sine of an \angle is equal to the cosine of its complement.						
Parent Graphs & Transformations:						
$y = x$ $y = x $ $y = x^2$	$y = x^3$ $y = a^x$ $y = \sqrt{x}$					

Transformation	Visual effect
f(x)+k	Shift up by k units
f(x)-k	Shift down by k units
f(x+h)	Shift left by h units
f(x-h)	Shift right by h units
-f(x)	Reflect over the x axis (flip upside down)
cf(x)	Stretch vertically by a factor of c (becomes skinnier)
$\frac{1}{f(x)}$	Shrink vertically by a factor of c (becomes fatter)
С	